An End-to-End, Large-Scale Measurement of DNS-over-Encryption: How Far Have We Come?

Chaoyi Lu, Baojun Liu, Zhou Li, Shuang Hao, Haixin Duan, Mingming Zhang, Chunying Leng, Ying Liu, Zaifeng Zhang, Jianping Wu

Domain Name System

DNS Privacy

Where are the risks?

DNS Privacy

People could be watching our queries.

The revelations (from the Edward Snowden documents, which were leaked from the National Security Agency (NSA)) of the MORECOWBELL surveillance program [<u>morecowbell</u>], which uses the DNS, both passively and actively, to surreptitiously gather information about the users, is another good example showing that the lack of privacy protections in the DNS is actively exploited.

RFC 7626 on DNS privacy

NSA's MORECOWBELL: Knell for DNS

Christian Grothoff Matthias Wachs Monika Ermert Jacob Appelbaum Inria TU Munich Heise Verlag Tor Project

1 Introduction

On the net, close to everything starts with a request to the Domain Name System (DNS), a core Internet protocol to allow users to access Internet services by names, such as www.example.com, instead of using numeric IP addresses, like 2001:DB8:4145::4242. Developed in the "Internet good old times" the contemporary

The MORECOWBELL surveillance program of NSA

DNS Privacy

People could be watching our queries. And do stuff like:

Device Fingerprinting [Chang '15]

User behavior Analysis [Kim '15]

DNS Privacy: What Has Been Done? Three IETF WGs. Three standardized protocols. More implementations and tests coming...

DNS-over-Encryption: Standard Protocols DNS-over-TLS (DoT, RFC 7858, May 2016) Uses TLS to wrap DNS messages. Dedicated port 853. Stub resolver update needed.

> DNS-over-HTTPS (DoH, RFC 8484, Oct 2018) Embeds DNS packets into HTTP messages. Shared port 443. More user-space friendly.

DNS-over-Encryption: Standard Protocols

Issuing DNS-over-TLS queries with kdig.

\$ kdig @1.1.1.1 +tls example.com

;; TLS session (TLS1.2)-(ECDHE-ECDSA-SECP256R1)-(AES-128-GCM)
;; ->>HEADER<<- opcode: QUERY; status: NOERROR; id: 24012
;; Flags: qr rd ra; QUERY: 1; ANSWER: 1; AUTHORITY: 0; ADDITIONAL: 1</pre>

Issuing DNS-over-HTTPS queries in a browser.

https://dns.google.com/resolve?name=example.com&type=A

{"Status": 0,"TC": false,"RD": true,"RA": true,"AD": true,"CD": false,"Question":[{"name": "example.com.","type": 1}],"Answer":[{"name": "example.com.","type": 1,"TTL": 19159,"data": "93.184.216.34"}]}

The Rapid Development of DoE Widely getting support from the industry. DNS server software unbound 8_<mark>8</mark>_8 **Operating Systems** INUX android Web Browsers

Public DNS resolvers

The Rapid Development of DoE

Recent updates from service providers & vendors.

Firefox continues push to bring DNS over HTTPS by default for US users

Selena Deckelmann February 25, 2020

Today, Firefox began the rollout of encrypted DNS over HTTPS (DoH) by default for US-based users. The rollout will continue over the next few weeks to confirm no major issues are discovered as this new protocol is enabled for Firefox's US-based users.

Firefox: DoH by default for US users

Windows Insiders can now test DNS over HTTPS

05-13-2020 10:00 AM

If you have been waiting to try DNS over HTTPS (DoH) on Windows 10, you're in luck: the first testable version is now available to Windows Insiders! If you haven't been waiting for it, and are

Windows: DoH available for insiders

A safer and more private browsing experience with Secure DNS

Tuesday, May 19, 2020

With Chrome 83, we've started rolling out Secure DNS, a feature built on top of a secure DNS protocol called DNS-over-HTTPS, which is designed to improve your safety and

Chrome: DoH support

Apple adds support for encrypted DNS (DoH and DoT)

Apple said this week that iOS 14 and macOS 11 will support the DNS-over-HTTPS and DNS-over-TLS protocols.

Apple: DoT and DoH support added recently 10 Questions: from Users' Perspective How many DoE servers are there? Methodology: Internet-wide scanning.

How are the reachability and performance of DoE servers? Methodology: Large-scale client-side measurement.

What does the real-world usage of DoE look like? Methodology: Analysis on passive traffic.

DoE Server Discovery

DNS-over-TLS (DoT)

Runs over dedicated port 853.

DNS-over-HTTPS (DoH)

Uses common URI templates. (e.g., /dns-query)

URL database Inspection

DNS-over-TLS Resolvers Internet-wide probing with ZMap, getdns & OpenSSL.

DNS-over-TLS Resolvers Feb ~ May '19: ~2K open DoT resolvers in the wild. Several big players dominate in the count of servers.

DNS-over-TLS Resolvers Feb ~ May '19: ~2K open DoT resolvers in the wild.

Several big players dominate in the count of servers.

Jul '20: rises to 7.8k resolvers operated by 1.2K providers

DOT Resolver Certificates Authentication relies on PKIX certificates [RFC 8310]. Invalid certificates still poses as a problem.

ltem	Jul 01, 2019	Jul 01, 2020
Resolvers that use invalid certificate	230 / 2,179 (10.6%)	2,261 / 7,857 (28.8%) 🕇
Providers that have invalid certificate	61 / 234 (26.0%)	224 / 2,261 (9.9%) 👎

DOT Resolver Certificates Authentication relies on PKIX certificates [RFC 8310]. Invalid certificates still poses as a problem.

<u>Self-signed</u>	Expired	Broken
~70%	~15%	<u>certificate chains</u>
Firewalls & TLS inspection devices	1/3 expired before 2020	~15%
	(As of Jul 01, 2020)	

DNS-over-HTTPS Providers

Large-scale URL dataset inspection. May '19: 17 providers found, mostly known in lists.

Who runs it	Base URL
Google	https://dns.google.com/experimental
Cloudflare	https://cloudflare-dns.com/dns-query
Quad9	Recommended: https://dns.quad9.net/dns-query Secured: https://dns9.quad9.net/dns- query Unsecured: https://dns10.quad9.net/dns- query
CleanBrowsing	https://doh.cleanbrowsing.org/doh/family- filter/

Found 2 providers beyond the list: dns.adguard.com dns.233py.com

(DoH list maintained by the curl project)

DNS-over-HTTPS Providers

Large-scale URL dataset inspection. May '19: 17 providers found, mostly known in lists. Jul '20: 50+ URIs operated by 37 providers. 1

Examples:

https://doh.360.cn/dns-query https://dohtrial.att.net/dns-query https://public.dns.iij.jp/dns-query https://doh.xfinity.com/dns-query https://1111.cloudflare-dns.com/dns-query https://8888.google/dns-query https://doh.defaultroutes.de/dns-query https://ns-doh.licoho.de/dns-query

Reachability to DoE Servers Measurement platform built on SOCKS5 proxy network.

Reachability to DoE Servers Measurement platform built on SOCKS5 proxy network. Vantage point: 114K vantage points from 2 proxy networks.

Vantage	Platform	Count of		
		IP	Country	AS
Global	proxy rack	29,622	166	2,597
China (Censored)	を 応 HTTP	85,122	1 (CN)	5

Reachability to DoE Servers

Measurement platform built on SOCKS5 proxy network. Vantage point: 114K vantage points from 2 proxy networks. Test items on each vantage:

Are public services reachable?

1.1.1.1 8.8.8.8 via

Query a controlled domain via DNS/TCP, DoT & DoH Why do they fail? TLS certificate Open ports Webpages

Reachability Test Results

DoE is currently less interrupted by in-path devices. ~99% global reachability.

Vantage	Resolver	Query Failure Rate			
		DNS/TCP	DoT	DoH	Address 1.1.1.1 hijacked, e.g., by residential network devices.
Global	Cloudflare	16.5%	1.2% 🔶	0.1%	
	Google	15.8%	-	0.2%	
	Quad9	0.2%	0.2%	14.0%	
China	Google	1.1%	_	99.9%	

Reachability Test Results

DoE is currently less interrupted by in-path devices. ~99% global reachability.

Examples of 1.1.1.1 route hijacking:

Port open	# Client	Example client AS
22 (SSH)	28	AS17488 Hatheway IP Over Cable Internet
23 (Telnet)	40	AS24835 Vodafone Data
67 (DHCP)	7	AS52532 Speednet Telecomunicacoes Ldta
161 (SNMP)	10	AS9870 Dong-eui University
179 (BGP)	23	AS3269 Telecom Italia S.p.a

Reachability Test Results

DoE is currently less interrupted by in-path devices. ~99% global reachability.

Vantago	Resolver	Query Failure Rate			Forward DoH
vantage		DNS/TCP	DoT	DoH	DNS/53, with a
	Cloudflare	16.5%	1.2%	0.1%	small timeout.
Global	Google	15.8%	-	0.2%	
	Quad9	0.2%	0.2%	14.0%	
China	Google	1.1%	_	99.9% ←	Blocked by censorship.

DoE lookup performance

Aim: measure the relative query time of DNS and DoE. A major influence: connection reuse.

Specification

(RFC 7858, DNS-over-TLS)

"Clients and servers SHOULD reuse existing connections for subsequent queries as long as they have sufficient resources."

Implementation

Stub: supported by dig, kdig, Stubby, etc.

DoE lookup performance Vantage point: 8,257 proxy nodes from ProxyRack. Connection reuse: only recording DNS transaction time.

Performance Test Results Tolerable query time overhead with reused connections. On average, extra latency on the order of milliseconds.

31

DoE Traffic Observation

DNS-over-TLS (DoT)

Runs over dedicated port 853.

DNS-over-HTTPS (DoH) Resolver domain name (e.g., dns.google) In URI templates.

DNS-over-TLS Traffic

Data: 18-month NetFlow dataset from a large Chinese ISP. Scale: still less than traditional DNS, but growing.

DoT: 2 to 3 orders of magnitude less traffic (Early 2019)

DNS-over-TLS Traffic

Data: 18-month NetFlow dataset from a large Chinese ISP. Scale: still less than traditional DNS, but growing. Clients: centralized clients + temp users.

Top 20 netblocks: > 60% DoT traffic

> 95% netblocks: Active for < one week

DNS-over-HTTPS Traffic

Data: Passive DNS dataset, monthly query volume. Big players dominate. Also a growing trend.

Traffic Observed by DNS Providers DoT and DoH usage has grown significantly.

 \sim

Matthew Prince 🖄 🔗

Follow

8% of queries to @Cloudflare's 1.1.1.1 (one.one.one) are now encrypted via DNS over TLS or DNS over HTTPS. #betterinternet

Cloudflare: 8% of its queries are encrypted (May 2019)

Qihoo 360: 360 DoH used by 1.2M clients (July 2020)

Recommendation

Protocol designers Reuse well-developed protocols.

Service providers

Correct misconfigurations. Keep servers under regular maintenance.

DNS clients Education on benefits of encryption.

Dataset & code release

Please visit https://dnsencryption.info.

Summary: Key Observations

Open DNS-over-Encryption resolvers A number of small providers less-known. ~28% resolvers use invalid TLS certificates.

Client-side usability

Currently good reachability (~99%). Tolerable performance overhead with reused connections.

Real-world traffic Has been growing significantly.

An End-to-End, Large-Scale Measurement of DNS-over-Encryption: How Far Have We Come?

Chaoyi Lu, Baojun Liu, Zhou Li, Shuang Hao, Haixin Duan, Mingming Zhang, Chunying Leng, Ying Liu, Zaifeng Zhang, Jianping Wu

