Network topology design at 27,000 km/hr Debopam Bhattacherjee, ETH Zürich IETF -109

Network topology design at 27,000 km/hr Debopam Bhattacherjee, ETH Zürich IETF -109

10-20G / up to 8000 km Tens of seconds for link setup

Global low-latency Internet coverage

SpaceX Starlink 1,600 satellites initially 42,000 planned

3 2

di) e

SpaceX Starlink 1,600 satellites initially 42,000 planned

3 2

di) e

Amazon Kuiper 3,200 planned in 3 phases

Amazon Kuiper 3,200 planned in 3 phases

Amazon Kuiper 3,200 planned in 3 phases

OneWeb, Telesat, LinkSure, Astrome, Hongyan, ...

Conceste Con

How do we connect satellites?

Primer on constellations

1. Altitude

GEO 35,768 km ~238.4 ms RTT

1. Altitude

GEO 35,768 km ~238.4 ms RTT

1. Altitude

GEO 35,768 km ~238.4 ms RTT

Polar orbits

Polar orbits

90°

3. Connectivity +Grid

1600 satellites

Today's Internet

150 200 250 300 350 400 450 City-city RTT (ms)

satellites

Today's Internet

150 200 250 300 350 400 450 City-city RTT (ms)

satellites

Today's Internet

150 200 250 300 350 400 450 City-city RTT (ms)

5. System dynamics

Recife, Brazil 🔵 🛑

Dakar, Senegal

5. System dynamics

Recife, Brazil

Dakar, Senegal

> 500 km / min

Challenges

Gearing up for the 21st century space race

Debopam Bhattacherjee¹, Waqar Aqeel², Ilker Nadi Bozkurt², Anthony Aguirre³, Balakrishnan Chandrasekaran⁴, P. Brighten Godfrey⁵, Gregory Laughlin⁶, Bruce Maggs^{2,7}, Ankit Singla¹ ¹ETH Zürich, ²Duke, ³UCSC, ⁴MPI-INF, ⁵UIUC, ⁶Yale, ⁷Akamai Technologies

Topology design problem

Topology design problem

Taken from Wikipedia

Topology design problem

A high dimensional optimization problem

Countries and Dependencies by Population in 2014

Taken from Wikipedia

AS₂

AS

AS path lengths are poor proxies for performance

AS₃

ASSat

AS₄

Lower loss rates but higher latency

Challenges for congestion control

Time (s)

Challenges for congestion control

	• • •	•	• • •
	I	I	
$\mathbf{)}0$	1200	1600	2000

Time (s)

Utility of ISLs

"Internet from Space" without Inter-satellite Links?

Yannick Hauri, Debopam Bhattacherjee, Manuel Grossmann, Ankit Singla ETH Zürich

presumptively acceptable risk and encourage "design for demise," i.e. designing spacecraft so that they burn up completely upon re-entry into the Earth's atmosphere,⁴⁵⁰ but maintain the possibility for approval

presumptively acceptable risk and encourage "design for demise," i.e. designing spacecraft so that they burn up completely upon re-entry into the Earth's atmosphere,⁴⁵⁰ but maintain the possibility for approval

presumptively acceptable risk and encourage "design for demise," i.e. designing spacecraft so that they burn up completely upon re-entry into the Earth's atmosphere,⁴⁵⁰ but maintain the possibility for approval

No mention of silicon carbide components

presumptively acceptable risk and encourage "design for demise," i.e. designing spacecraft so that they burn up completely upon re-entry into the Earth's atmosphere,⁴⁵⁰ but maintain the possibility for approval

- No mention of silicon carbide components

Constellation under deployment does not have ISLs

Earth's surface

Earth's surface

......

Earth's surface

GT

..........

HotNets 2019

Using ground relays for low-latency wide-area routing in megaconstellations

Mark Handley, University College London

Latencies and variations thereof

• Latencies and variations thereof Impact on network-wide throughput

- Latencies and variations thereof
- Impact on network-wide throughput
- Resilience to weather

ns thereof e throughput

- Latencies and variations thereof
- Impact on network-wide throughput
- Resilience to weather

"Internet from Space" without Inter-satellite Links?

Yannick Hauri, Debopam Bhattacherjee, Manuel Grossmann, Ankit Singla ETH Zürich

HotNets 2020

ns thereof e throughput

High latency variations in BP

High latency variations in BP

Sparser air traffic over South Atlantic
High latency variations in BP

Sparser air traffic over South Atlantic

Inflation of ~100 ms

High latency variations in BP

Sparser air traffic over South Atlantic

 Inflation of ~100 ms
 North Atlantic paths get congested

Crossing unfriendly territory

- Crossing unfriendly territory
- Spectrum efficiency

- Crossing unfriendly territory
- Spectrum efficiency
- GSO arc avoidance

Earth's surface

- Crossing unfriendly territory
- Spectrum efficiency
- GSO arc avoidance

40°

Earth's surface

- Crossing unfriendly territory
- Spectrum efficiency
- GSO arc avoidance

40°

GSO line-of-sight

GT

Earth's surface

- Crossing unfriendly territory
- Spectrum efficiency
- GSO arc avoidance

40°

SpaceX September 3 launch video

"Recently as the Starlink team completed a test of two satellites in orbit that are equipped with our inter-satellite links which we call space lasers. With these space lasers, the Starlink satellites were able to transfer hundreds of gigabytes of data."

SpaceX September 3 launch video

"Recently as the Starlink team completed a test of two satellites in orbit that are equipped with our inter-satellite links which we call space lasers. With these space lasers, the Starlink satellites were able to transfer hundreds of gigabytes of data."

• ISL capacities?

SpaceX September 3 launch video

"Recently as the Starlink team completed a test of two satellites in orbit that are equipped with our inter-satellite links which we call space lasers. With these space lasers, the Starlink satellites were able to transfer hundreds of gigabytes of data."

- ISL capacities?
- Pointing ightarrow

SpaceX September 3 launch video

"Recently as the Starlink team completed a test of two satellites in orbit that are equipped with our inter-satellite links which we call space lasers. With these space lasers, the Starlink satellites were able to transfer hundreds of gigabytes of data."

- ISL capacities?
- Pointing ightarrow
- Topology

Network topology design at 27,000 km/hour

Debopam Bhattacherjee, Ankit Singla Department of Computer Science, ETH Zürich

SpaceX September 3 launch video

"Recently as the Starlink team completed a test of two satellites in orbit that are equipped with our inter-satellite links which we call space lasers. With these space lasers, the Starlink satellites were able to transfer hundreds of gigabytes of data."

- ISL capacities?
- Pointing ightarrow
- Topology
- OneWeb's no-ISL design

Network topology design at 27,000 km/hour

Debopam Bhattacherjee, Ankit Singla Department of Computer Science, ETH Zürich

How do we connect satellites?

How do we connect satellites?

How do we connect satellites?

Network topology design at 27,000 km/hour

Debopam Bhattacherjee, Ankit Singla Department of Computer Science, ETH Zürich

CoNEXT 2019

System dynamics

System dynamics

Link setup times

System dynamics

Link setup times

Max. no of links per satellite

• Given satellite trajectories

Given satellite trajectories Traffic matrices drawn from intuition

• Given satellite trajectories Traffic matrices drawn from intuition

• Ground-satellite connectivity is range-bounded

• Given satellite trajectories Traffic matrices drawn from intuition • +Grid is the baseline

• Ground-satellite connectivity is range-bounded

+Grid

+Grid

...

Mesosphere (up to 80 km)

...

Mesosphere (up to 80 km)

Can use much longer links

...

Mesosphere (up to 80 km)

Can use much longer links

...

Mesosphere (up to 80 km)

Can use much longer links 5014 km inter-satellite link 550 km altitude

Mesosphere (up to 80 km)

What do we optimize for?

City 3

City 2

Traffic ~ **Population product**

City 3

City 2

Traffic ~ Population product GDP

City 3

Stretch = LSat LGeodesic

Hop count

$M = \alpha$ Stretch + Hop count

Hop count

Why aren't obvious / traditional methods enough?

Why not use Integer programming?

Why not use Integer programming?

For 1000 cities, would take ~10²⁹ days

Why not use Integer programming?

For 1000 cities, would take ~10²⁹ days One minute apart ~91% links are different

Why not use random graphs?

Why not use random graphs?

In 5 mins, 19% of links become infeasible

Why not use random graphs?

In 5 mins, 19% of links become infeasible Cannot optimize for arbitrary objectives

Random graph

Hop-count

Our approach

Constellations explored

 Uniform 40x40 (40²) 53° inclination, 550 km altitude • SpaceX Starlink Phase 1 (24x66, 53°, 550 km) [Configuration changed recently] • Amazon **Kuiper** Phase 1 (34², 51.9°, 630 km)

Avg. Stretch

Pareto frontier

Pareto frontier

+Grid is a low-efficiency motif

+Grid is a low-efficiency motif

Avg. Hop-count

+Grid

More options at higher latitudes

Beyond single motif frontier 2 1.8 1.6 Avg. Stretch ()Multi-motifs 1.4 1.2 4.5 5.5 5

Avg. Hop-count

Avg. Hop-count

Performance improvements

Starlink 54%

Kuiper 45%

40²

48%

Performance improvements

Starlink 54% 40%

Kuiper 45% 4%

402

48% 7%

Severely power-limited links

• Trajectory Design

Trajectory Design Multi-dimensional

Trajectory Design Multi-dimensional Routing & Congestion Control

• Trajectory Design Multi-dimensional Routing & Congestion Control • Simulators

• Trajectory Design Multi-dimensional Routing & Congestion Control • Simulators Packet-level

• Trajectory Design Multi-dimensional Routing & Congestion Control • Simulators Packet-level Flow-level