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Global low-latency Internet coverage
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How do we connect satellites?



Primer on constellations
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> 500 km / min
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Gearing up for the 215t century space race

Debopam Bhattacherjee!, Waqar Aqeel?, Tiker Nadi Bozkurt?, Anthony Aguirre’®, Balakrishnan Chandrasekaran?,
P. Brighten Godfrey”, Gregory Laughlin®, Bruce Maggs®”, Ankit Singla’

'ETH Ziirich, *Duke, *UCSC, “MPI-INF, *UIUC, ®Yale, ' Akamai Technologies
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True anomaly

Argument of p¢g
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AS path lengths are poor proxies for performance




Weather awareness
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Weather awareness
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Weather awareness

... Lower loss rates but higher latency
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Challenges for congestion control
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Challenges for congestion control
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Utility of ISLs

“Internet from Space” without Inter-satellite Links?

Yannick Hauri, Debopam Bhattacherjee, Manuel Grossmann, Ankit Singla
ETH Zirich
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burn up completely upon re-entry into the Earth’s atmosphere,**° but maintain the possibility for approval
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FCC specification

presumptively acceptable risk and encourage “design for demise,” 1.e. designing spacecraft so that they

burn up completely upon re-entry into the Earth’s atmosphere,*° but maintain the possibility for approval

* No mention of silicon carbide components

» Constellation under deployment does not have ISLs
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Bent-pipe connectivity (BP)
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HotNets 2019

Using ground relays for low-latency wide-area
routing in megaconstellations

Mark Handlcy, University College London
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* Impact on network-wide throughput

e Resilience to weather

“Internet from Space” without Inter-satellite Links?

Yannick Hauri, Debopam Bhattacherjee, Manuel Grossmann, Ankit Singla
ETH Zirich

HotNets 2020
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High latency variations in BP

Sparser air traffic over
South Atlantic

RTT: 1/5 ms

* Inflation of ~100 ms
* North Atlantic paths
get congested
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Impact of weather
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Impact of weather




Impact of weather

Satellite
o Groud Relay
A Aircraft
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Atmospheric attenuation [dB]
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Other benefits of ISLs

e Crossing unfriendly territory

» Spectrum efficiency
GSO line-of-sight

/\ Restricted field-of-view
40° (

e 3GSO arc avoidance

Earth’s surface



Recent news

» SpaceX September 3 launch video

"Recently as the Starlink team completed a test of two satellites
in orbit that are equipped with our inter-satellite links which we
call space lasers. With these space lasers, the Starlink satellites
were able to transter hundreds of gigabytes ot data.”
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Recent news

» SpaceX September 3 launch video

"Recently as the Starlink team completed a test of two satellites
in orbit that are equipped with our inter-satellite links which we
call space lasers. With these space lasers, the Starlink satellites
were able to transter hundreds of gigabytes of data.”

* |SL capacities?

Network topology design at 27,000 km/hour

* Pointing
Debopam Bhattacherjee, Ankit Singla
* Jo PO | ogy Department of Computer Science, ETH Ziirich

* OneWeb’s no-ISL design
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How do we connect satellites?

‘ Dakar, Senegal

> 500 km / min

Recife, Brazil @ %

Network topology design at 27,000 km/hour

Debopam Bhattacherjee, Ankit Singla
Department of Computer Science, ETH Ziirich

CoNEXT 2019
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Key constraints

Link setup times

F%
.
P

System dynamics
g “ h

> 500 km / min

Max. no of links
per satellite

" Recife, Brazil @ ‘
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Assumptions

® Given satellite trajectories
® Traffic matrices drawn from intuition
® Ground-satellite connectivity is range-bounded

® +@Grid is the baseline
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Can use much longer links

5014 km inter-satellite link
550 km altitude @ ----------------cooee

Mesosphere
(up to 80 km)




Much larger design space




Much larger design space




Much larger design space




Much larger design space




What do we optimize for?



Traffic matrix
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City 3




Metrics

Ls,
Stretch = ol

Hop count e-e




Metrics

Ls,
Stretch = ol

TN _ Lsat -

LGebdesic

Hop count e-e

M = a Stretch + Hop count



Why aren’t obvious / traditional
methods enough?
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Why not use Integer programming?

For 1000 cities, would take ~102? days

One minute apart ~21% links are different
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Why not use random graphs?

In 5 mins, 19% of links become inteasible

Cannot optimize for arbitrary objectives

Stretch

o Random graph

Hop-count



Our approach



pexels.com


http://pexels.com
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Constellations explored

® Unitorm 40x40 (402) 53° inclination, 550 km altitude
® SpaCeX Stal‘link Phase ,‘ (24)(66, 530, 550 km) [Configuration changed recently]
® Amazon Kuiper Phase 1 (342, 51.9°, 630 km)
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A large number of design points
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+Grid is a low-efficiency motif
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+Grid is a low-efficiency motif
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More options at higher latitudes

4000 53°
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Beyond single motif frontier
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Beyond single motif frontier

2T
M = a Stretch + Hop-count
/

How important stretch is

16 B (']=1

@ .
Multi-motifs
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Performance improvements

Severely power-limited links

Starlink 54% 40%
Kuiper 45% 4%
402 48% 7%
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® Trajectory Design

® Multi-dimensional
® Routing & Congestion Control
® Simulators

® Packet-level

® Flow-level



