Beyond Jain's Fairness Index:
Setting The Bar For the Deployment
of Congestion Control Algorithms

Ranysha Ware Matthew K. Mukerjee Justine Sherry Srinivasan Seshan
Carnegie Mellon Nefeli Carnegie Mellon Carnegie Mellon
University Networks University University

| have designed a new CCA:

How do we show @ is reasonable
to deploy In the Internet?

We typically use fairness to show that & is reasonably deployable
alongside w, a legacy algorithm. 10

8Mbps/5KB 4Mbps/30KB

: —>%- Vivace-Loss :

-~ Vivace-Latency

—o- Allegro :
- BBR

P
BBR v2 improvements: coexistence with Reno/CUBIC _.i_

s

- BBRV1: low throughput for Reno/CUBIC flows sharing some paths
- BBRV2: adapts bandwidth probing for better coexistence with Reno/CUBIC [IETF 102]

l 4 CUBIC, 1 BBR v2, 50M, 40ms, : ; ;
)\ buffer = 1xBDP o {less friendly: M—\x—”"‘
‘ start time {0, 2, 4, 6, 8} secs = = ¥

S s = s S SRS s T bw retrans

Link Utilization (%)

" = = = - cuBiCt = 105M 0.3% L
Comstierite more friendly
CUBIC 2 91M 0.1% i
sou] ﬁ\»— NS \fw“'\ CUBIC3 = 104M 0.1% 0 8 16 24 32
20m) | N\/\,\,\/v—\'\/—/_\/\ o A o
W\ cusicsa | 87M | 01% Number of CUBIC Flows
25 — | - — = = —— BBRW2 93M 0.1% oo veoo T
I T P ="TUU | DUNIDIUS | U.J0 0.58 0.54 dased CC
g. 90Mb1t/S 0.63 0.62 0.88 Itk xfer, varying buffer sizes
S 15|
e .
=R R S Table 2: PCC can be TCP friendly -
o S s
> g®
< 0.5 8 - Sﬁﬁ.c

)
S
<

Buffer (BDP)

Vegas Reno Cubic Copa PCC Bl

0.25
0.50
1.00
2.00
8.00
16.00
32,00
64.00

But everyone falls short of achieving fair outcomes.

Link Utilization (%)

100

=
jo R
!
=
(4]
k]
~.
-
o
=
2
<

BBR v2 improvements: coexistence with Reno/CUBIC

- BBRV1: low throughput for Reno/CUBIC flows sharing some paths
- BBRV2: adapts bandwidth probing for better coexistence with Reno/CUBIC [IETF 102]

Individual Rate
ol 4 CUBIC, 1 BBR V2, 50M, 40ms,
‘ buffer = TxBDP
\ start time {0, 2, 4, 6, 8} secs
Ne bw retrans
"; L 0 100 150 200 cuBIC 1 105M 0.3%
Cumulative Rats i
CuBIC 2 91M 0.1%

CuBIC3 104 M 0.1%

w‘[W\ CuBIC 4 87M 0.1%
/ .
) T BBRW2 93 M 0.1%

| BMbps/5KB 4Mbps/30KB '
P —— —>%- Vivace-Loss :
P —%- Vivace-Latency :

| —— —o-- Allegro :
: - BBR™ . :
w : :
o iless friendly; */*H,’x
: = —
—-H
—"*_-_
more friendiy
i
0 8 16 24 32

Number of CUBIC Flows

' AV A P

1 P =10UU JUIVIDIUS U.J0

058 | 0.54 | DPasedCC

90Mbit/s 0.63

0 62 O 88 lk xfer, varying buffer sizes

Table 2: PCC can be TCP friendly —

Goodput (M
2

»
o

—— BBR
—+— CUBIC

Vegas Reno Cubic Copa PCC Bl

0.25
0.50
1.00

)
S
<

Buffer (BDP)

2.00
8.00
16.00
32,00
64.00

But everyone falls short of achieving fair outcomes.

(e) RTT 100ms with varvine bandwidt

| Cubic can be unfair to Reno, but “outside of TCP-friendly
| region” and “this doesn’t highly impact Reno’s performance.”

h

But everyone falls short of achieving fair outcomes.

| | I | | | I | | | CUBIC can be unfair to Reno, but “outside of TCP-friendly
| region” and “this doesn’t highly impact Reno’s performance.”

BBRv1 can be unfair to Cubic, but “we are looking at
modeling shallow buffer situations”.

But everyone falls short of achieving fair outcomes.

(e) RTT 100ms with varvine bandwidth

Curren t dynamics w/ with loss-based CC
CUBIC vs B8R goodput: bw = 10Mbps, RTT = 40ms, 4 min. bulk e, varying buffer sizes

CUBIC can be unfair to Reno, but “outside of TCP-friendly
region” and “this doesn’t highly impact Reno’s performance.”

BBRv1 can be unfair to Cubic, but “we are looking at
modeling shallow buffer situations”.

PCC Vivace can be unfair to Cubic, but “as the number of
CUBIC senders increases, it achieves the best fairness among
new generation protocols.”

But everyone falls short of achieving fair outcomes.

(e) RTT 100ms with varvine bandwidth

Curren t dynamics w/ with loss-based CC
CUBIC vs B8R goodput: bw = 10Mbps, RTT = 40ms, 4 min. bulk e, varying buffer sizes

25
Scheme under test's throughput NN T
g 2f Cubic's throughput I
g st T
E oo
) DSJ ' . ! !
o
Vegas Reno Cubc Copa PCC BBA

CUBIC can be unfair to Reno, but “outside of TCP-friendly
region” and “this doesn’t highly impact Reno’s performance.”

BBRv1 can be unfair to Cubic, but “we are looking at
modeling shallow buffer situations”.

PCC Vivace can be unfair to Cubic, but “as the number of
CUBIC senders increases, it achieves the best fairness among
new generation protocols.”

Copa can be unfair to Cubic, but “is much fairer than BBR
and PCC" and “uses bandwidth Cubic does not utilize.”

Everyone makes excuses why
their algorithm 1s still

reasonable to deploy despite
unfair outcomes.

This talk:
We need a practical deployment

threshold: a ‘bound on how
aggressive a new CCA, can
be to ®, the status quo.

Outline:
1. What are desirable properties
of a deployment threshold?

2. We define a new deployment
threshold: harm.

Outline:
1. What are desirable properties
of a deployment threshold?

2. We define a new deployment
threshold: harm.

We identify 5 desirable properties for a deployment threshold.

ety

MULTI-
METRIC

G

PRACTICAL STATUS-QUO

BIASED

al

DEMAND-
AWARE

FUTURE-
PROOF

We identify 5 desirable properties for a deployment threshold.

G

PRACTICAL

14

A deployment threshold needs to be practical: should be feasible for
new CCA to meet threshold.

100 ;
8Mbps/5KB 4Mbps/30KB
—— —- ¥ivace-to§s
120 . . o —¥— — - ivace-Latency
BBR v2 improvements: coexistence with Reno/CUBIC \ —e— —e- Allegro
—a— —- BBR |
- BBRV1:low throughput for Reno/CUBIC flows sharing some paths | | R\ "WIs o o7 o
- BBR v2: adapts bandwidth probing for better coexistence with Reno/CUBIC [IETF 102] N
_ -l 4 CUBIC, 1 BBR v2, 50M, 40ms, "
% ~ buffer = 1xBDP o less friendly: */‘-Flf"*
E start time {0, 2, 4, 6, 8} secs ; - = =
- H -
% P e s e e bw retrans .
% % o w - CUBIC 1 105M 0.3% émore friend
| CUBIC 2 91M 0.1% i
- \ CUBIC3 104M 01% 0 8 16 24 32
- | S 1 cUBIC4 87M 0.1% Number of CUBIC Flows
25 — c;/ - = = = S———BBRW2 93M 0.1% viou -
2 L T P ="TUU | JUNIDIUS U0 0.58 0.54 oased CC
L— % 90Mbltls 063 062 0.88 Ik xfer, varying buffer sizes
8 15 —
k-] . .
: Table 2: PCC can be TCP friendly -
—
S $ 0
> g
< 05 3 - =~ e

(

Vegas Reno Cubic Copa PCC Bl

025
0s0
100

o

I

Buffer (BDP)

16,00

15

We identify 5 desirable properties for a deployment threshold.

ety

MULTI-
METRIC

16

Slow bottleneck link

o
0

17

Slow bottleneck link

o
0

18

Latency: 5 ms
Download speed: 5 Mbps

Link capacity: 10 Mbps

o
0

19

Latency: 5 ms
Download speed: 5 Mbps

Link capacity: 10 Mbps

—>
0}

20

Latency: 5 ms

Download speed: 5 Mbps

Link capacity: 10 Mbps

—>
0}

21

Latency: 5-+ms 100 ms

Download speed: 5 Mbps

Download speed: 5 Mbps

Link capacity: 10 Mbps

—>
0}

22

A deployment threshold needs to be multi-metric: can account for
performance metrics beyond just throughput.

Latency: 5-+ms 100 ms

Download speed: 5 Mbps Link capacity: 10 Mbps

—>
0}

Download speed: 5 Mbps CCA: &

23

Metrics like latency cannot be
“divided fairly”.

We identify 5 desirable properties for a deployment threshold.

STATUS-QUO
BIASED

25

Download speed: 10 Mbps

Link capacity: 10 Mbps

0

Ubuntu 16.04 LTS

26

Download speed: 10 Mbps

Link capacity: 10 Mbps

—
0}

0

Ubuntu 16.04 LTS

CCA: w

27

Download speed: 10 Mbps

Link capacity: 10 Mbps

—
0}

0

Ubuntu 16.04 LTS

28

N

Download speed: 10-Mbps 9 Mbps

Download speed: 1 Mbps

Link capacity: 10 Mbps

0

Ubuntu 16.04 LTS

CCA: w

CCA: &

29

A deployment threshold needs to be status-quo biased: based only
on impact of & on w, not vice-versa.

Link capacity: 10 Mbps

Download speed: 10-Mbps 9 Mbps =
/ N .(J.

/ﬁ} -
v A\ Ubuntu 16.04 LTS

CCA: \v

Download speed: 1 Mbps CCA: &

30

Jain’'s fairness index Is not status-
quo biased.

We identify 5 desirable properties for a deployment threshold.

adl

DEMAND-
AWARE

32

Download speed: 3 Mbps

Link capacity: 10 Mbps

0

Ubuntu 16.04 LTS

33

Download speed: 3 Mbps

Link capacity: 10 Mbps

—
0}

0

Ubuntu 16.04 LTS

CCA: w

34

Download speed: 3 Mbps
o N

Link capacity: 10 Mbps

—
0}

0

Ubuntu 16.04 LTS

35

Download speed: 3 Mbps

N
A\

Download speed: 7 Mbps

Link capacity: 10 Mbps

—
0}

0

Ubuntu 16.04 LTS

CCA: w

CCA: &

36

A deployment threshold needs to be demand-aware: do not penalize
& when W has inherently poor performance.

Link capacity: 10 Mbps

Download speed: 3 Mbps

N
= N\

0

Ubuntu 16.04 LTS

CCA: \v

—
0}

Download speed: 7 Mbps CCA: &

37

Max-min fairness iIs demand aware,
equal-rate fairness is not.

We identify 5 desirable properties for a deployment threshold.

FUTURE-
PROOF

39

A deployment threshold needs to be future-proof: useful on a future
Internet where none of today's current CCAs are deployed.

40

A deployment threshold needs to be future-proof: useful on a future
Internet where none of today's current CCAs are deployed.

Link capacity: 10 Mbps

Download speed: 1 Mbps

o
0

41

A deployment threshold needs to be future-proof: useful on a future
Internet where none of today's current CCAs are deployed.

Link capacity: 10 Mbps

o
0

42

Does & need to be nice to w and @ or just w?

Download speed: 5 Mbps Link capacity: 10 Mbps

—>
0}

43

A future-proof threshold would only require & to be nice to 'w

Link capacity: 10 Mbps

Download speed: 5 Mbps

—>
0}

44

T CP-friendliness is not future-proof.

We identify 5 desirable properties for a deployment threshold.

ety

MULTI-
METRIC

G

PRACTICAL STATUS-QUO

BIASED

al

DEMAND-
AWARE

FUTURE-
PROOF

Outline:
1. What are desirable properties
of a deployment threshold?

2. We define a new deployment
threshold: harm.

When showing deployability: we run experiments of w vs. & and
measure performance.

48

When showing deployability: we run experiments of w vs. & and
measure performance.

IS}
=

o

)

2 An

O

< example
4

49

When showing deployability: we run experiments of w vs. & and
measure performance.

< >
s
=3
Q_ .
<= | Fairness
a0
o | compares
=

these two bars

50

When showing deployability: we run experiments of w vs. & and
measure performance.

Do not care
what happens
to &

throughput

51

When showing deployability: we run experiments of w vs. & and
measure performance.

IS}
=

J;%O Only care

3 about w

= performance

52

We want to measure the impact of & on w performance.

Only care about
how w performance

changes

M

throughput

w alone

53

Our Proposal:
Deployment threshold should be

based on how much harm @ does

to ®

This I1s w performance alone.

Latency: 5 ms
Download speed: 10 Mbps

Link capacity: 10 Mbps

55

Harm measures the impact of € on w performance.

Latency: 100 ms
Download speed: 5 Mbps
4 N

bp

Link capacity: 10 Mbps

—>
0}

56

Harm is [0,1] where O is harmless and 1 is maximally harmful.

Harm is [0,1] where O is harmless and 1 is maximally harmful.

- alone: (x) How to Compute Harm:

x = w solo performance (demand)

\., Latency: 5 ms
Download speed: 10 Mbps

Harm is [0,1] where O is harmless and 1 is maximally harmful.

alone: (x)

Latency: 5 ms
Download speed: 10 Mbps

vs. & (y)

-

Latency: 100 ms
Download speed: 5 Mbps

How to Compute Harm:
x = w solo performance (demand)

y = w performance competing with &

59

Harm is [0,1] where O is harmless and 1 is maximally harmful.

alone: (x)

Latency: 5 ms
Download speed: 10 Mbps

vs. & (y)

-

Latency: 100 ms
Download speed: 5 Mbps

How to Compute Harm:
x = w solo performance (demand)

y = w performance competing with &
For “more is better” metrics (throughput):

For “less is better” metrics (latency):

60

Harm is [0,1] where O is harmless and 1 is maximally harmful.

alone: (x)

Latency: 5 ms
Download speed: 10 Mbps

-

vs. & (y)

Latency: 100 ms
Download speed: 5 Mbps

How to Compute Harm:
x = w solo performance (demand)

y = w performance competing with &

For “more is better” metrics (throughput):

For “less is better” metrics (latency):

Example:
& caused throughput harm:

& caused latency harm:

10-5

10

100-5
100

50

= .95

61

Harm is [0,1] where O is harmless and 1 is maximally harmful.

w alone: (x) How to Compute Harm:
x = w solo performance (demand)
\- Latency: 5 ms y = w performance competing with &
Download speed: 10 Mbps
N For “more is better” metrics (throughput): ;y
wvs. & (y)
w Latency: 100 ms For “less is better” metrics (latency): y_ X
y

Download speed: 5 Mbps

& caused throughput harm:

& caused latency harm:

Desirable threshold properties:

[1Practical ODemand-Aware [OStatus-Quo Biased Multi-metric Future-Proof
62

Harm is [0,1] where O is harmless and 1 is maximally harmful.

w alone: (x)

x = w solo performance (demand)

\- Latency: 5 ms y = w performance competing with &

Download speed: 10 Mbps

N For “more is better” metrics (throughput): ;y
wvs. & (y)
w Latency: 100 ms For “less is better” metrics (latency): y_ X
Download speed: 5 Mbps Y
Example: Lo—s5
, 22 50
& caused throughput harm: —; :
& caused latency harm: 122;5 = .95

Desirable threshold properties:

CPractical ODemand-Aware Status-Quo Biased Multi-metric OFuture-Proof
63

Harm is [0,1] where O is harmless and 1 is maximally harmful.

w alone: (x)

x = w solo performance (demand)

\- Latency: 5 ms y = w performance competing with &
Download speed: 10 Mbps
N For “more is better” metrics (throughput): ;y
wvs. & (y)
w Latency: 100 ms For “less is better” metrics (latency): y_ X
Download speed: 5 Mbps Y
Example: 105
& caused throughput harm: —5~ = 50
& caused latency harm: 122;5 = .95

Desirable threshold properties:

[1Practical Demand-Aware Status-Quo Biased Multi-metric OFuture-Proof
64

But how much harm is OK?

Kev Insight:
A harm-based threshold:

should not harm ® much
more than ® harms itself

Harm(& vs. &)

67

Harm(& vs. &)

3

Harm(w vs. &)

68

There are many possible thresholds based on harm (see paper!).
One possible harm-based threshold: equivalent-bounded harm.

Harm(& vs. &)

-1

Harm(w vs. &)

69

One possible harm-based threshold: equivalent-bounded harm.

Latency: 100 ms
Download speed: 5 Mbps

Link capacity: 10 Mbps

R

—>
0}

Harm(® vs. ®)

70

One possible harm-based threshold: equivalent-bounded harm.

Latency: 10 ms
Download speed: 5 Mbps

Link capacity: 10 Mbps

R

—>
0}

Harm(® vs. ®) }

alone:

Latency: 5 ms
Download speed: 10 Mbps

vs. &

Latency: 100 ms
Download speed: 5 Mbps

How to Compute Harm:
x = W solo performance (demand)

y = W performance competing with &
For “more is better” metrics (throughput):

For “less is better” metrics (latency):

Example: 10—5

& caused throughput harm: —5~ = -0

100-5

& caused latency harm: o5 = 95

72

w alone: How to Compute Harm:
x = W solo performance (demand)

w Latency: 5 ms

y = W performance competing with &
Download speed: 10 Mbps

\ ,. For “more is better” metrics (throughput):
w vs. &

w Latency: 100 ms For “less is better” metrics (latency):
Download speed: 5 Mbps

Example:

10-5
3 & caused throughput harm: —5~ = -0
VS. W.
100-5
Latency: 10 ms & caused latency harm: 5 =
Download speed: 5 Mbps W caused throughput harm: —13;5 = .50
\ 10-5
w caused latency harm: 5 = 20

73

alone:

Latency: 5 ms
Download speed: 10 Mbps

vs. &

Latency: 100 ms
Download speed: 5 Mbps

VS. W,

Latency: 10 ms
Download speed: 5 Mbps

How to Compute Harm:
x = W solo performance (demand)

y = W performance competing with &

For “more is better” metrics (throughput):

For “less is better” metrics (latency):

10-5

& caused throughput harm: —5~ = -0

~ 100-5
& caused latency harm: o5 = 95
\ 10-5

w caused throughput harm: 0 = .50
\ 10-5

w caused latency harm: 5 = 20

74

alone:

Latency: 5 ms
Download speed: 10 Mbps

vs. &

Latency: 100 ms
Download speed: 5 Mbps

VS. W,

Latency: 10 ms
Download speed: 5 Mbps

How to Compute Harm:
x = W solo performance (demand)

y = W performance competing with &
For “more is better” metrics (throughput):

For “less is better” metrics (latency):

Example: o5
& caused throughput harm: —5~ = -0

: 100-5
& caused latency harm: o5 = 95
\ 10-5

w caused throughput harm: 0 = .50
\ 10-5

w caused latency harm: = .50

75

w alone: How to Compute Harm:
x = W solo performance (demand)

w Latency: 5 ms

y = W performance competing with &
Download speed: 10 Mbps

N For “more is better” metrics (throughput):
w vs. &

w Latency: 100 ms For “less is better” metrics (latency):
Download speed: 5 Mbps

Example:

10-5
3 & caused throughput harm: —5~ = -0
VS. W,
100-5
Latency: 10 ms & caused latency harm: 5 =
Download speed: 5 Mbps W caused throughput harm: —1(;5 = .50
\ 10-5
w caused latency harm: 5 = 20

Desirable threshold properties:

Practical Demand-Aware Status-Quo Biased Multi-metric OFuture-Proof
76

w alone: How to Compute Harm:
x = W solo performance (demand)

w Latency: 5 ms

y = W performance competing with &
Download speed: 10 Mbps

N For “more is better” metrics (throughput):
w vs. &

w Latency: 100 ms For “less is better” metrics (latency):
Download speed: 5 Mbps

Example:

10-5
3 & caused throughput harm: —5~ = -0
VS. W,
100-5
Latency: 10 ms & caused latency harm: 5 =
Download speed: 5 Mbps W caused throughput harm: —1(;5 = .50
\ 10-5
w caused latency harm: 5 = 20

Desirable threshold properties:
Practical Demand-Aware Status-Quo Biased Multi-metric Future-Proof

77

Is equivalent-bounded harm the answer? It meets all of our criteria.

"HQHH‘UII ﬁ\.[/i

MULTI- . DEMAND-
METRIC AWARE
@]
STATUS-QUO FUTURE-
PRACTICAL BIASED PROOF

Fairness and T CP-friendliness do not.

Is equivalent-bounded harm the answer? But has issues.

= o~

MULTI- . DEMAND-
METRIC AWARE
G
STATUS-QUO FUTURE-
PRACTICAL BIASED PROOF

Fairness and T CP-friendliness do not.

Download speed: 7 Mbps

N
=\

Download speed: 3 Mbps

Link capacity: 10 Mbps

0

Ubuntu 16.04 LTS

CCA: w

80

Could & improve this imbalance? Equivalent-bounded harm
says no.

Link capacity: 10 Mbps

Download speed: 7 Mbps

N
A\

0

Ubuntu 16.04 LTS

Download speed: 3 Mbps

81

Other open questions:

1. Alternatives to equivalent-bounded harm?

2. Given a distribution of results, is there some ‘leeway in harm’? Should worry
about average or worst case results?

3. What are the right workloads and networks for deployability testing?

. How widely deployed must a legacy CCA be in order to merit protection by our
threshold?

5. If we have a threshold, should it be enforced? If so, how?

While we haven't settled (yet) on

the perfect threshold, here Is
what we do believe...

Fairness Is not working as a

practical threshold.

We need to stop making excuses

for why our new algorithms are
not meeting an unrealistic goal.

Reasoning about harm is the

right way forward to derive a new
threshold.

Beyond Jain's Fairness Index:
Setting The Bar For the Deployment

of Congestion Control Algorithms

Ranysha Ware
rware@cs.cmu.edu
@ranyshware

The Bar For Deployment: Do no more harm to the status quo
than it does to itself.

Some open questions:

1. Alternative to equivalent-bounded harm?

2. Given a distribution of results, is there some ‘leeway in harm'?
Should worry about average or worst case results?

3. What are the right workloads and networks for deployability
testing?

BACKUP SLIDES

Every algorithm is unfair?

Example of unfair outcomes: Cubic is unfair to Reno.

Link Utilization (%)

120

100

80

60

40

20

T
SACK s
SACK ™
HSTCP v=72
BIC-TCP ExX=x=

CUBIC wemmm |

10 50 100 200 400
Link Speed (Mbps)

(c) RTT 100ms with varying bandwidth

90

Example of unfair outcomes: Cubic is unfair to Reno.

120 T
SACK mmmmm
SACK =
HSTCP ===
BIC-TCP &=x=x=
100 CUBIC wmm |
80 |+
5
8 60t
2
g
40 -
20
0
10 50 100 200 400
Link Speed (Mbps)
(c) RTT 100ms with varying bandwidth

Example of unfair to outcomes: Cubic is unfair to Reno.

Link Utilization (%)

120

100

80

60

40 -

20

T
SACK s
SACK =
HSTCP r==2
BIC-TCP Ex=x=3

CUBIC wemmm |
10 50 100 200

400
Link Speed (Mbps)

(c) RTT 100ms with varying bandwidth

92

What i1s T CP-friendliness?

A mimicry-based threshold: If & mimics the behavior of w then &
Is deployable.

TCP-friendliness: A TCP friendly flow should react to loss the same way that TCP
Reno does such that

M 1
BW < (3op)

RTT) /p

95

TCP-friendliness: A TCP friendly flow should react to loss the same way that TCP
Reno does such that

M 1
BW < (3op)

RTT) /p

96

What do you mean by

status-quo?

There are some applications that are more popular than others.

450
260/0 CAGR 400
300
250

Exabytes °
200

per Month £0
100
50
O

2017 2018 2019 2020 2021 2022

Gaming (1%, 4%)

File Shanng (7%, 2%)

WebyData (17%, 12%)

IP VOD/ Managed IP Video (20%, 11%)
Internet Video (55%, 71%)

* Figures (n) refer to 2017, 2022 traffic share
Sowrce: Cisco VNI Global P Traffic Forecast, 2017-2022

Figure: Internet Video is already more than half of all Internet traffic

98

Throughout this talk, this is how we defined harm:

Harm(& vs. &)

3

Harm(\- VS. \v)

99

In the paper, we define harm also as a function of the network
conditions € and workload ™

) = Link capacity: 10 Mbps

N

100

In the paper, we define harm also as a function of the network
conditions @ and workload ™.

Harm(& vs. w, ©

101

