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| have designed a new CCA:

How do we show @ is reasonable
to deploy In the Internet?




We typically use fairness to show that & is reasonably deployable
alongside w, a legacy algorithm. 10
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But everyone falls short of achieving fair outcomes.

Link Utilization (%)

100

=
jo R
!
=
(4]
k]
~.
-
o
=
2
<

BBR v2 improvements: coexistence with Reno/CUBIC

- BBRV1: low throughput for Reno/CUBIC flows sharing some paths
- BBRV2: adapts bandwidth probing for better coexistence with Reno/CUBIC [IETF 102]

Individual Rate
ol 4 CUBIC, 1 BBR V2, 50M, 40ms,
‘ buffer = TxBDP
\ start time {0, 2, 4, 6, 8} secs
Ne bw retrans
"; L 0 100 150 200 cuBIC 1 105M 0.3%
Cumulative Rats i
CuBIC 2 91M 0.1%

CuBIC3 104 M 0.1%

w‘[ W\ CuBIC 4 87M 0.1%
/ .
) T BBRW2 93 M 0.1%

| BMbps/5KB 4Mbps/30KB '
P —— —>%- Vivace-Loss :
P —%- Vivace-Latency :

| —— —o-- Allegro :
: - BBR™ . :
w : :
o iless friendly; */*H,’x
: = —
—-H
—"*_-_
more friendiy
i
0 8 16 24 32

Number of CUBIC Flows

' AV A P

1 P =10UU JUIVIDIUS U.J0

058 | 0.54 | DPasedCC

90Mbit/s 0.63

0 62 O 88 lk xfer, varying buffer sizes

Table 2: PCC can be TCP friendly —

Goodput (M
2

»
o

—— BBR
—+— CUBIC

Vegas Reno Cubic Copa PCC Bl

0.25
0.50
1.00

)
S
<

Buffer (BDP)

2.00
8.00
16.00
32,00
64.00




But everyone falls short of achieving fair outcomes.
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But everyone falls short of achieving fair outcomes.

(e) RTT 100ms with varvine bandwidth
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CUBIC can be unfair to Reno, but “outside of TCP-friendly
region” and “this doesn’t highly impact Reno’s performance.”

BBRv1 can be unfair to Cubic, but “we are looking at
modeling shallow buffer situations”.

PCC Vivace can be unfair to Cubic, but “as the number of
CUBIC senders increases, it achieves the best fairness among
new generation protocols.”

Copa can be unfair to Cubic, but “is much fairer than BBR
and PCC" and “uses bandwidth Cubic does not utilize.”



Everyone makes excuses why
their algorithm 1s still

reasonable to deploy despite
unfair outcomes.




This talk:
We need a practical deployment

threshold: a ‘bound on how
aggressive a new CCA, can
be to ®, the status quo.




Outline:
1. What are desirable properties
of a deployment threshold?

2. We define a new deployment
threshold: harm.
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A deployment threshold needs to be practical: should be feasible for
new CCA to meet threshold.
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We identify 5 desirable properties for a deployment threshold.
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Slow bottleneck link
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A deployment threshold needs to be multi-metric: can account for
performance metrics beyond just throughput.
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Metrics like latency cannot be
“divided fairly”.



We identify 5 desirable properties for a deployment threshold.
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Download speed: 10-Mbps 9 Mbps
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A deployment threshold needs to be status-quo biased: based only
on impact of & on w, not vice-versa.
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Jain’'s fairness index Is not status-
quo biased.



We identify 5 desirable properties for a deployment threshold.
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A deployment threshold needs to be demand-aware: do not penalize
& when W has inherently poor performance.
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Max-min fairness iIs demand aware,
equal-rate fairness is not.



We identify 5 desirable properties for a deployment threshold.
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A deployment threshold needs to be future-proof: useful on a future
Internet where none of today's current CCAs are deployed.
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A deployment threshold needs to be future-proof: useful on a future
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Does & need to be nice to w and @ or just w?
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A future-proof threshold would only require & to be nice to 'w

Link capacity: 10 Mbps

Download speed: 5 Mbps
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T CP-friendliness is not future-proof.



We identify 5 desirable properties for a deployment threshold.
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Outline:
1. What are desirable properties
of a deployment threshold?

2. We define a new deployment
threshold: harm.




When showing deployability: we run experiments of w vs. & and
measure performance.
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When showing deployability: we run experiments of w vs. & and
measure performance.
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When showing deployability: we run experiments of w vs. & and
measure performance.

Do not care
what happens
to &

throughput
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When showing deployability: we run experiments of w vs. & and
measure performance.
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We want to measure the impact of & on w performance.

Only care about
how w performance

changes

M

throughput

w alone
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Our Proposal:
Deployment threshold should be

based on how much harm @ does

to ®




This I1s w performance alone.

Latency: 5 ms
Download speed: 10 Mbps

Link capacity: 10 Mbps
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Harm measures the impact of € on w performance.

Latency: 100 ms
Download speed: 5 Mbps
4 N
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Harm is [0,1] where O is harmless and 1 is maximally harmful.
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Harm is [0,1] where O is harmless and 1 is maximally harmful.

alone: (x)

Latency: 5 ms
Download speed: 10 Mbps

-

vs. & (y)

Latency: 100 ms
Download speed: 5 Mbps

How to Compute Harm:
x = w solo performance (demand)

y = w performance competing with &

For “more is better” metrics (throughput):

For “less is better” metrics (latency):

Example:
& caused throughput harm:

& caused latency harm:

10-5

10

100-5
100
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= .95
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Harm is [0,1] where O is harmless and 1 is maximally harmful.

w alone: (x) How to Compute Harm:
x = w solo performance (demand)
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N For “more is better” metrics (throughput): ;y
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Download speed: 5 Mbps
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Harm is [0,1] where O is harmless and 1 is maximally harmful.
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But how much harm is OK?




Kev Insight:
A harm-based threshold:

should not harm ® much
more than ® harms itself




Harm(& vs. &)
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Harm(& vs. &)

3

Harm(w vs. &)
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There are many possible thresholds based on harm (see paper!).
One possible harm-based threshold: equivalent-bounded harm.

Harm(& vs. &)
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Harm(w vs. &)

69



One possible harm-based threshold: equivalent-bounded harm.
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w alone: How to Compute Harm:
x = W solo performance (demand)

w Latency: 5 ms

y = W performance competing with &
Download speed: 10 Mbps

\ ,. For “more is better” metrics (throughput):
w vs. &

w Latency: 100 ms For “less is better” metrics (latency):
Download speed: 5 Mbps

Example:
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3 & caused throughput harm: —5~ = -0
VS. W.
100-5
Latency: 10 ms & caused latency harm: 5 =
Download speed: 5 Mbps W caused throughput harm: —13;5 = .50
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w caused latency harm: 5 = 20
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Download speed: 10 Mbps
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Download speed: 5 Mbps
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Download speed: 5 Mbps

How to Compute Harm:
x = W solo performance (demand)

y = W performance competing with &
For “more is better” metrics (throughput):

For “less is better” metrics (latency):

Example: o5
& caused throughput harm: —5~ = -0

: 100-5
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Is equivalent-bounded harm the answer? It meets all of our criteria.
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Is equivalent-bounded harm the answer? But has issues.
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Could & improve this imbalance? Equivalent-bounded harm
says no.

Link capacity: 10 Mbps

Download speed: 7 Mbps

N
A\

0

Ubuntu 16.04 LTS

Download speed: 3 Mbps
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Other open questions:

1. Alternatives to equivalent-bounded harm?

2. Given a distribution of results, is there some ‘leeway in harm’? Should worry
about average or worst case results?

3. What are the right workloads and networks for deployability testing?

. How widely deployed must a legacy CCA be in order to merit protection by our
threshold?

5. If we have a threshold, should it be enforced? If so, how?



While we haven't settled (yet) on

the perfect threshold, here Is
what we do believe...




Fairness Is not working as a

practical threshold.




We need to stop making excuses

for why our new algorithms are
not meeting an unrealistic goal.




Reasoning about harm is the

right way forward to derive a new
threshold.




Beyond Jain's Fairness Index:
Setting The Bar For the Deployment

of Congestion Control Algorithms
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The Bar For Deployment: Do no more harm to the status quo
than it does to itself.

Some open questions:

1. Alternative to equivalent-bounded harm?

2. Given a distribution of results, is there some ‘leeway in harm'?
Should worry about average or worst case results?

3. What are the right workloads and networks for deployability
testing?
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Every algorithm is unfair?




Example of unfair outcomes: Cubic is unfair to Reno.
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Example of unfair to outcomes: Cubic is unfair to Reno.
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What i1s T CP-friendliness?




A mimicry-based threshold: If & mimics the behavior of w then &
Is deployable.

TCP-friendliness: A TCP friendly flow should react to loss the same way that TCP
Reno does such that

M 1
BW < (3op )

RTT ) /p
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TCP-friendliness: A TCP friendly flow should react to loss the same way that TCP
Reno does such that
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What do you mean by

status-quo?




There are some applications that are more popular than others.

450
260/0 CAGR 400
300
250

Exabytes °
200

per Month £0
100
50
O

2017 2018 2019 2020 2021 2022

Gaming (1%, 4%)

File Shanng (7%, 2%)

WebyData (17%, 12%)

IP VOD/ Managed IP Video (20%, 11%)
Internet Video (55%, 71%)

* Figures (n) refer to 2017, 2022 traffic share
Sowrce: Cisco VNI Global P Traffic Forecast, 2017-2022

Figure: Internet Video is already more than half of all Internet traffic
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Throughout this talk, this is how we defined harm:

Harm(& vs. &)

3

Harm(\- VS. \v )
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In the paper, we define harm also as a function of the network
conditions € and workload ™

) = Link capacity: 10 Mbps

N
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In the paper, we define harm also as a function of the network
conditions @ and workload ™.

Harm(& vs. w, ©
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