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Introduction: adaptive bitrate (ABR) video streaming

• Video streaming dominates Internet traffic

• Adaptive bitrate (ABR) is a key algorithm to optimize quality of experience (QoE)

– primary goals: higher video quality, fewer stalls

– prior work: BBA [SIGCOMM ’14], MPC [SIGCOMM ’15], CS2P [SIGCOMM ’16],
Pensieve [SIGCOMM ’17], Oboe [SIGCOMM ’18]
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Introduction: adaptive bitrate (ABR) video streaming

• ABR decides the quality level of each video chunk to optimize total QoE
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Outline

1 Puffer: a live streaming platform for video streaming research

2 Finding: confidence intervals in video streaming are bigger than expected

3 Fugu: an ML-based ABR algorithm learned in situ
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Puffer: a live streaming platform running a randomized experiment

• Free live TV streaming website (puffer.stanford.edu)

• Opened to public December 2018

• User sessions are randomized to different algorithms

• Goal: realistic testbed and learning environment for video streaming research
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Website: puffer.stanford.edu
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Ads for “live tv” and “tv streaming”
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Puffer architecture

TV Antenna

ATSC
Demodulator

Decoder/Encoder 1

Decoder/Encoder 2

Decoder/Encoder 3

Video Server
(ABR)

Video ClientVideo ClientVideo Client

User
Database

Time Series
Database

Monitoring System

Francis Y. Yan (MSR) 9 / 31



Puffer statistics

• 32,000 lines of code
1,606 commits
78,497++
46,623--

• 130,000 real users

• 60 years of video streamed
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Reproducible research and open platform
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Confidence intervals in video streaming are bigger than expected

• Existing ABR algorithms found benefits like 10%–20% based on experiments
lasting hours between a few network nodes

• We found: 2 years of data per scheme are needed to measure 20% precision
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Confidence intervals in video streaming are bigger than expected

• Results on the day of Jan. 26, 2019, with 17 days of video streamed to 600 users
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Confidence intervals in video streaming are bigger than expected

• Results in the week starting from Jan. 26, 2019, streaming 42 days of video
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Confidence intervals in video streaming are bigger than expected

• Results in the month starting from Jan. 26, 2019, streaming 169 days of video
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Confidence intervals in video streaming are bigger than expected

• Results in an eight-month period after Jan. 26, 2019, streaming > 13 years of video
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Confidence intervals in video streaming are bigger than expected

• Need 2 years of video per scheme to reliably
measure a 20% difference

• Reason: Internet is way more noisy and
heavy-tailed than we thought

– only 4% of the 637,189 streams had any stalls

– distributions of throughputs and watch times
are highly skewed 16
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Outline

1 Puffer: a live streaming platform for video streaming research

2 Finding: confidence intervals in video streaming are bigger than expected

3 Fugu: an ML-based ABR algorithm learned in situ
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System dynamics of ABR

• The only system uncertainty is transmission time of each chunk
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Fugu’s transmission time predictor (TTP)

• Neural network predicts “how long would each chunk take?”

• Input:

– sizes and transmission times of past chunks
– size of a chunk to be transmitted (not a throughput predictor)
– low-level TCP statistics (min RTT, RTT, CWND, packets in flight, delivery rate)

• Output:

– probability distribution over transmission time (not a point estimate)
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Learning TTP in situ (in place)

• Training: supervised learning in situ on real data from deployment environment

– chunk-by-chunk series of each individual video stream

– chunk i : size, timestamp sent, timestamp acknowledged, TCP statistics right before sending

• Learning in situ does not replay throughput traces or require network simulators

– we don’t know how to faithfully simulate the Internet
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Fugu’s model-based controller

• Objective function: expected sum of QoE in the lookahead horizon

• QoE: +video quality, −quality variation, −rebuffering
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Fugu’s model-based controller

• Given TTP, optimal plan can be computed in real time

with dynamic programming

v∗
i (Bi ,Ki−1) = max

K s
i

{∑
ti

Pr[T̂ (K s
i ) = ti ]·

(QoE (K s
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Fugu’s model-based controller

• Replan at every step (model predictive control)

• Mitigate accumulation of errors
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Fugu is a model-based reinforcement-learning algorithm
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Evaluation: SSIM vs stalls
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Evaluation: primary results

Results of primary experiment (Jan. 26–Aug. 7 & Aug. 30–Oct. 16, 2019)

Algorithm Time stalled Mean SSIM SSIM variation Mean duration

Fugu 0.13% 16.64 dB 0.74 dB 33.6 min
MPC-HM 0.22% 16.61 dB 0.79 dB 30.8 min
BBA 0.19% 16.56 dB 1.11 dB 32.1 min
Pensieve 0.17% 16.26 dB 1.05 dB 31.6 min
RobustMPC-HM 0.12% 16.01 dB 0.98 dB 31.0 min
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Evaluation: cold-start performance
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Takeaways

1 Puffer: a video streaming platform opened to research community
– 130,000+ real users, streamed 60+ years of video

2 Finding: confidence intervals in video streaming are bigger than expected
– we need 2 years of data per scheme to measure 20% precision

3 Fugu: an ML-based ABR algorithm learned in situ
– Transmission Time Predictor (TTP)
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