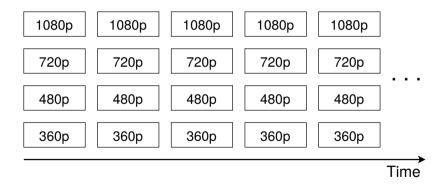
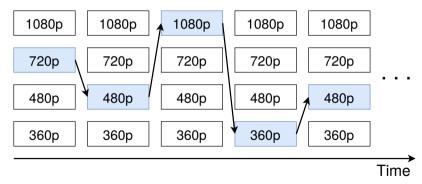
Learning *in situ:* a randomized experiment in video streaming[†] https://puffer.stanford.edu

Francis Y. Yan





Francis Y. Yan (MSR)

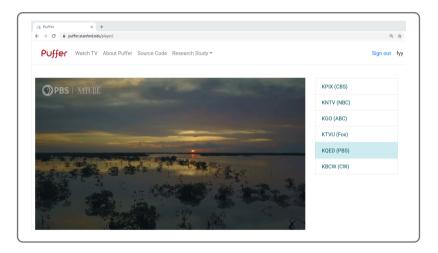

[†]This work was completed at Stanford University with Hudson Ayers, Chenzhi Zhu, Sadjad Fouladi, James Hong, Keyi Zhang, Emily Marx, Philip Levis, and Keith Winstein.

- Video streaming dominates Internet traffic
- Adaptive bitrate (ABR) is a key algorithm to optimize quality of experience (QoE)
 - primary goals: higher video quality, fewer stalls
 - prior work: BBA [sigcomm '14], MPC [sigcomm '15], CS2P [sigcomm '16], Pensieve [sigcomm '17], Oboe [sigcomm '18]

• ABR decides the quality level of each video chunk to optimize total QoE

- 1 Puffer: a live streaming platform for video streaming research
- 2 Finding: confidence intervals in video streaming are bigger than expected
- **3 Fugu**: an ML-based ABR algorithm learned *in situ*

1 Puffer: a live streaming platform for video streaming research

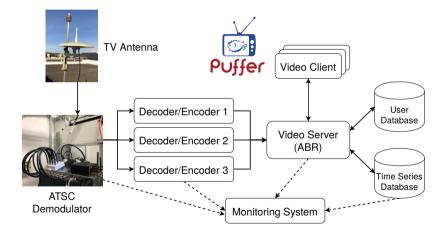

2 Finding: confidence intervals in video streaming are bigger than expected

3 Fugu: an ML-based ABR algorithm learned *in situ*

Puffer: a live streaming platform running a randomized experiment

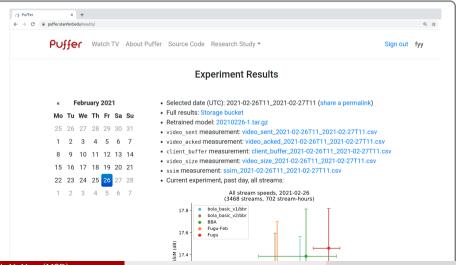

- Free live TV streaming website (puffer.stanford.edu)
- Opened to public December 2018
- User sessions are randomized to different algorithms
- Goal: realistic testbed and learning environment for video streaming research

Website: puffer.stanford.edu



Ads for "live tv" and "tv streaming"

Puffer architecture

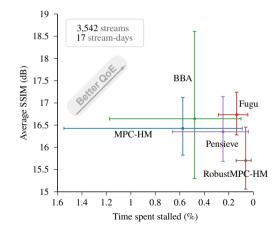

Puffer statistics

• 32,000 lines of code

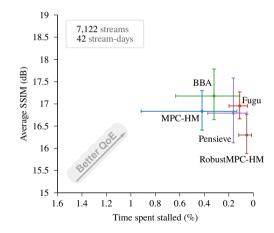
1,606 commits 78,497++ 46,623--

- 130,000 real users
- 60 years of video streamed

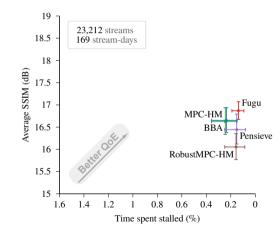
Reproducible research and open platform

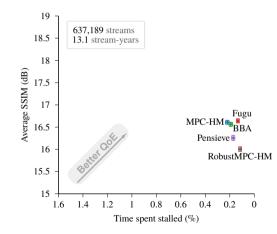

1 Puffer: a live streaming platform for video streaming research

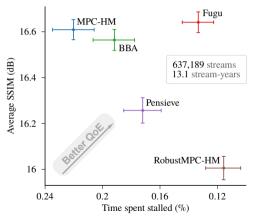
2 Finding: confidence intervals in video streaming are bigger than expected


3 Fugu: an ML-based ABR algorithm learned *in situ*

- Existing ABR algorithms found benefits like 10%–20% based on experiments lasting *hours* between *a few* network nodes
- We found: 2 years of data per scheme are needed to measure 20% precision

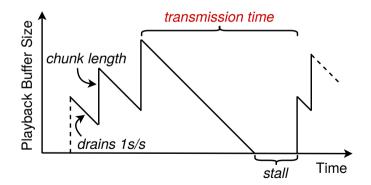

• Results on the day of Jan. 26, 2019, with 17 days of video streamed to 600 users


• Results in the week starting from Jan. 26, 2019, streaming 42 days of video


• Results in the month starting from Jan. 26, 2019, streaming 169 days of video

• Results in an *eight-month* period after Jan. 26, 2019, streaming > 13 years of video

- Need 2 years of video per scheme to reliably measure a 20% difference
- Reason: Internet is way more noisy and heavy-tailed than we thought
 - only 4% of the 637,189 streams had any stalls
 - distributions of throughputs and watch times are highly skewed



- 1 Puffer: a live streaming platform for video streaming research
- 2 Finding: confidence intervals in video streaming are bigger than expected

3 Fugu: an ML-based ABR algorithm learned in situ

System dynamics of ABR

• The only system uncertainty is *transmission time* of each chunk

• Neural network predicts "how long would each chunk take?"

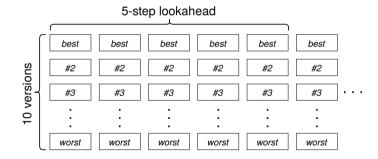
- Neural network predicts "how long would each chunk take?"
- Input:
 - sizes and transmission times of past chunks

- Neural network predicts "how long would each chunk take?"
- Input:
 - sizes and transmission times of past chunks
 - size of a chunk to be transmitted (not a throughput predictor)

Fact: observed throughput varies with file size

- Neural network predicts "how long would each chunk take?"
- Input:
 - sizes and transmission times of past chunks
 - size of a chunk to be transmitted (not a throughput predictor)
 - low-level TCP statistics (min RTT, RTT, CWND, packets in flight, delivery rate)

- Neural network predicts "how long would each chunk take?"
- Input:
 - sizes and transmission times of past chunks
 - size of a chunk to be transmitted (not a throughput predictor)
 - low-level TCP statistics (min RTT, RTT, CWND, packets in flight, delivery rate)
- Output:
 - probability distribution over transmission time (not a point estimate)

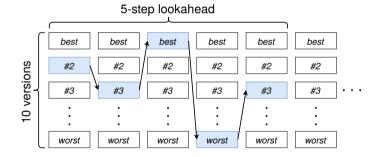

Learning TTP *in situ* (in place)

- Training: supervised learning in situ on real data from deployment environment
 - chunk-by-chunk series of each individual video stream
 - chunk i: size, timestamp sent, timestamp acknowledged, TCP statistics right before sending

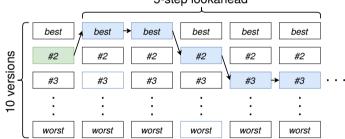
Learning TTP *in situ* (in place)

- Training: supervised learning in situ on real data from deployment environment
 - chunk-by-chunk series of each individual video stream
 - chunk i: size, timestamp sent, timestamp acknowledged, TCP statistics right before sending
- Learning *in situ* does **not** replay throughput traces or require network simulators
 - we don't know how to faithfully simulate the Internet

- Objective function: expected sum of QoE in the lookahead horizon
- QoE: +video quality, -quality variation, -rebuffering

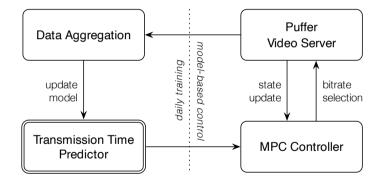


• Given TTP, optimal plan can be computed in real time

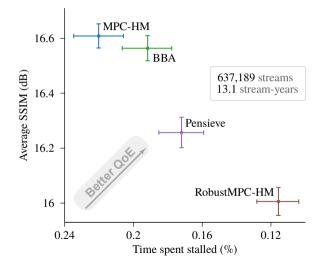

with dynamic programming

$$v_{i}^{*}(B_{i}, K_{i-1}) = \max_{K_{i}^{s}} \left\{ \sum_{t_{i}} \Pr[\hat{T}(K_{i}^{s}) = t_{i}] \cdot (QoE(K_{i}^{s}, K_{i-1}) + v_{i+1}^{*}(B_{i+1}, K_{i}^{s})) \right\}$$

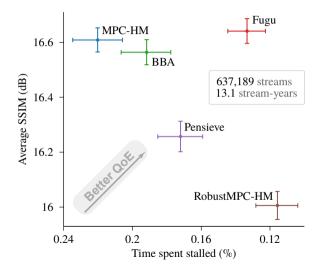
- Replan at every step (model predictive control)
- Mitigate accumulation of errors



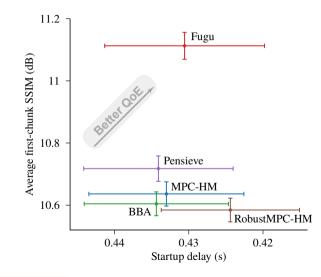
- Replan at every step (model predictive control)
- Mitigate accumulation of errors



5-step lookahead


Fugu is a model-based reinforcement-learning algorithm

Evaluation: SSIM vs stalls


Evaluation: SSIM vs stalls

Results of primary experiment (Jan. 26–Aug. 7 & Aug. 30–Oct. 16, 202	19)
--	-----

Algorithm	Time stalled	Mean SSIM	SSIM variation	Mean duration
Fugu	0.13%	16.64 dB	0.74 dB	33.6 min
MPC-HM	0.22%	16.61 dB	0.79 dB	30.8 min
BBA	0.19%	16.56 dB	1.11 dB	32.1 min
Pensieve	0.17%	16.26 dB	1.05 dB	31.6 min
RobustMPC-HM	0.12%	16.01 dB	0.98 dB	31.0 min

Evaluation: cold-start performance

1 Puffer: a video streaming platform opened to research community

- 130,000+ real users, streamed 60+ years of video
- Finding: confidence intervals in video streaming are bigger than expected
 we need 2 years of data per scheme to measure 20% precision
- **3 Fugu**: an ML-based ABR algorithm learned in situ
 - Transmission Time Predictor (TTP)

Francis Y. Yan <francisy@microsoft.com>