Come As You Are:

Helping Unmodified Clients Bypass
Censorship with Server-Side Evasion

Kevin Bock

George Hughey, Louls-He
Danlel Liscinsky, Regina

UNIVERSITY OF

W MARYLAND

nri Merino, lania Arya,

2ogosian,

Dave Levin

75 7
NS

Applied Networking Research Prize

In-network censorship by nation-states

RR———-

Ciere @)—— BT oo

In-network censorship by nation-states

Client 0C Server

In-network censorship by nation-states

Client © Server

In-network censorship by nation-states

Client 0C Server

In-network censorship by nation-states

Y7/ \ é
K. X

e Server

1

Client 0C

N

In-network censorship by nation-states

Y7/ \ é
K. X

e Server

1

Client 0C

N

In-network censorship by nation-states

Client 0C Server

In-network censorship by nation-states

—

Deep packet inspection (g

Client Server

In-network censorship by nation-states

=/

Deep packet inspection (g

Client Server

In-network censorship by nation-states

Client 0C Server

In-network censorship by nation-states

,.l

Spoofed tear-down packets

Client Server

In-network censorship by nation-states

Client

In-network censorship by nation-states

Client

In-network censorship by nation-states

Client Server

In-network censorship by nation-states

Spoofed tear-down packets

Client © Server

The server The client
terminated terminated

In-network censorship by nation-states

Spoofed tear-down packets

Client Server

The server The client
terminated terminated

Injecting tear-down packets

In-network censorship by nation-states

Spoofed tear-down packets

Client © Server

The server The client
terminated terminated

Injecting tear-down packets
Requires per-flow state

Censors necessarily take shortcuts

In-network censorship by nation-states

Server

Injecting tear-down packets
Requires per-flow state

Censors necessarily take shortcuts

Evasion can take advantage of these shortcuts

In-network censorship by nation-states

Client © Server

TTL=2

Injecting tear-down packets
Requires per-flow state

Censors necessarily take shortcuts

Evasion can take advantage of these shortcuts

In-network censorship by nation-states

Client 0C Server

TTL=I

Injecting tear-down packets
Requires per-flow state

Censors necessarily take shortcuts

Evasion can take advantage of these shortcuts

In-network censorship by nation-states

[4 / Q(]\) \

BV Server

)

Client 0C

Injecting tear-down packets
Requires per-flow state

Censors necessarily take shortcuts

Evasion can take advantage of these shortcuts

In-network censorship by nation-states

[4 / Q(]\) \

BV Server

)

Client 0C

TTL=0

Injecting tear-down packets
Requires per-flow state

Censors necessarily take shortcuts

Evasion can take advantage of these shortcuts

In-network censorship by nation-states

Server

Injecting tear-down packets
Requires per-flow state

Censors necessarily take shortcuts

Evasion can take advantage of these shortcuts

In-network censorship by nation-states

The client
terminated

— a
4 &) v 9 15/\
80 o' s d
By~
)

. Server

S
C
2
~

Client 0C

Still good

Injecting tear-down packets
Requires per-flow state

Censors necessarily take shortcuts

Evasion can take advantage of these shortcuts

Evasion has always involved the client

Client 0C Server

Evasion has always involved the client

Censoring regime

Evasion has always involved the client

Censoring regime

Installing software can
pose risks to the user

Evasion has always involved the client

Censoring regime

Installing software can
pose risks to the user

Cannot help users who do not
know they are censored

Ideally, servers could help

Censoring regime

Server-side evasion

Censoring regime

Server

Server-side evasion

Censoring regime

Server

Potentially broadens reachability
without any client-side deployment

Server-side evasion ‘‘shouldn’t” work

Client Server

SYN

T

w

ACK

T

PSH/ACK

—lqwen)

ACK

K

PSH/ACK

(response)

Server-side evasion ‘‘shouldn’t” work

Client Server

SYN

T

w

ACK

T

ACK

K

PSH/ACK

(response)

Server-side evasion ‘‘shouldn’t” work

Censored keyword

Client

SYN

T

w

ACK

T

PSH/ACK

ACK

K

PSH/ACK

(response)

Server

All a server does
before client is censored

This paper

Server-side evasion is possible

— For every country and protocol we tested

— Artifact-evaluated, open-source tool

New insights into how censors work

— GFW's resynchronization state

— "Multibox Theory”

This paper

Server-side evasion is possible

— For every country and protocol we tested

— Artifact-evaluated, open-source tool

Geneva

Genetic Evasion

Client Server

Bock et al. CCS’ 19

(Geneva

Genetic Evasion

Client 0C Server

R Geneva runs strictly at one side

Manipulates packets to and from the client

Bock et al. CCS’ 19

Geneva

Genetic Evasion

Manipulates packets to and from the client

Bock et al. CCS’ 19

| Geneva |
(Genetic Evasion

Manipulates packets to and from the client

Alter or corrupt
any TCP/IP header field

- No semantic understanding
of what the fields mean

Bock et al. CCS’ 19

| Geneva |
(Genetic Evasion

Manipulates packets to and from the client

Alter or corrupt
any TCP/IP header field

Fragment (IP) or

>egment (TCP) - No semantic understanding

of what the fields mean

Bock et al. CCS’ 19

| Geneva |
(Genetic Evasion

Manipulates packets to and from the client

out:tcp.flags=A

Bock et al. CCS’ 19

| Geneva |
(Genetic Evasion

Manipulates packets to and from the client

Bock et al. CCS’ 19

| Geneva |
(Genetic Evasion

Manipulates packets to and from the client

.. ACtion

in-order

Bock et al. CCS’ 19

Running a Strategy

Server

Bock et al. CCS’ 19

Running a Strategy

Client Server

out:tcp.flags=A

Bock et al. CCS’ 19

Running a Strategy

Server

Bock et al. CCS’ 19

Running a Strategy

Client Server

out:tcp.flags=A

Bock et al. CCS’ 19

Running a Strategy

Client Server

out:tcp.flags=A

Bock et al. CCS’ 19

Running a Strategy

Client Server

out:tcp.flags=A

TTL=8

Bock et al. CCS’ 19

Running a Strategy

Client Server

out:tcp.flags=A

Bock et al. CCS’ 19

Running a Strategy

Server

Bock et al. CCS’ 19

Running a Strategy

Client Server

out:tcp.flags=A

Bock et al. CCS’ 19

Running a Strategy

Server

Bock et al. CCS’ 19

This paper: Server-side Geneva

Client 0C Server

Modified Geneva to run server-side -

Deployed against real world censors

Results against real censors

Diversity of protocols

—— A —-—- A ——-

¥ & &

Results against real censors

Diversity of protocols

TP HITTPS DNS FIP SMTP

Oi Cﬁ 08 03 v

..

Forbidden
keywords & domains

Results against real censors

Diversity of protocols

TP HITTPS DNS FIP SMTP

..

Forbidden xiazai@upup.info
keywords & domains

Results against real censors

Diversity of censors Diversity of protocols

CHTTP HTTPS DNS FTP SMTP

niects TCP RSTs - P B 3 7

China
Injects & blackholes ® i z) 8*

Injects & blacknholes -

Kazakhstan

Injects a block page

India

Server-side evasion ‘‘shouldn’t” work

Client Server

SYN

T

SYN/ACK | All a server does
/))
before client is censored

ACK

T

PSH/ACK

ACK

K —

PSH/ACK

(response)

A successful server-side evasion strategy

Client Server

SYN

T

SYN

PR

SYN
(payload)

/

SYN/ACK
ACK

ACK

PSH/ACK
—le)

ACK

K

PSH/ACK

(response)

A successful server-side evasion strategy

Client Server

SYN

T

SYN |

N

SYN
(payload)
SYN/ACK

ACK

TCP simultaneous open

ACK

PSH/ACK

—Lwen |

ACK

K

PSH/ACK

(response)

A successful server-side evasion strategy

Client Server

SYN

T

SYN |

N

SYN

SYN/ACK N Cllent SendS 1 SYN/ACK

ACK

TCP simultaneous open

ACK

PSH/ACK

—Lwen |

ACK

K

PSH/ACK

(response)

A successful server-side evasion strategy

Censor de-synchronizes

Client

SYN

T

SYN

PRSI

SYN
(payload)
k

SYN/ACK
ACK

ACK

PSH/ACK

—fey)

ACK

K

PSH/ACK

(response)

Server

TCP simultaneous open

Client sends a SYN/ACK

A successful server-side evasion strategy

Client Server

SYN

T

SYN

L

SYN
(payload)

/

SYN/ACK
~Success rates— N
DNS 89% ACK
1P 369% PSH/ACK
HTTP 54% —
HTTPS 55% —
L SMTP 70% ;ﬁ;{,‘,}fe')(

Server-side evasion strategies

Client Server Client Server Client Server Client Server Client Server Client Server Client Server Client Server
SYN % SYN SYN SYN SYN SYN SYN
RST SYN SYN/ACK SYN/ACK FIN
T — | (bad ackno) (snf‘lz%?n%w (bad ackno) SYN/ACK | (Wioad — RoT
SN (payioad) o e e | Pty SYN/ACK ‘W
oa
/ 4 SYN % SYN/ACK RST (bad ackno (bad ackno
SYN/ACK | (edackno) - | (edadne) -
—
SYN/ACR RST PSH/ACK RST RST RST
ACK ; SYN/ACK
— | & SYN/ACK Hauery segment) ACK (/ load)
PSH/ACK PSH/ACK SYN/ACK SYN/ACK
—Gen) | ACK MK — Hquery segmen) | PoH/ACK ACK ACK ACK
ue, T T T
ACK PSH/ACK PSH/ACK — & PSH/ACK PSH/ACK PSH/ACK
«— | PSH/ACK (query) Hauery segment) ACK (query) (query) (query)
PSH/ACK query) —] - s . —
(response) ACK ACK PSH/ACK ACK ACK ACK
C o <« K] | (response) ‘m ‘m PSH/ACK
PSH/ACK PSH/ACK «— |
h I n a PSH/ACK (response) (response) A-W ‘w w
(response) «— | «—
«— |
8 strategi
Client Server Client Server Client Server Client Server
SYN SYN SYN SYN
E— o T
SYN/ACK SYN/ACK SYN/ACK .
| omallwindon) | (randload) | Peren D (no flags)
ACK (SYNd/;AC[IB SYN/ACK «—
\ rand loa ion GET)
(benign SYN/ACK
SYN/ACK «—
PSH/ACK (rand load) ACK

ACK
T uery segment)
T
D e T~

el Feellmeellmeelimeel Feellmeellmelimeellireelmell WL PSH/ACK PSqI-zlté g():K
PSH/ACK ACK (uery) §\>
uery segment) T,
Hauer segment) PSH/ACK ACK ACK
PSH/ACK «— | k@e‘)/ M’__

Iran/India . Kazakhstan =l
| strategy 3 strategies

Server-side evasion results
B NULLTCP Flags

Client Server

SYN

T

%)
(no flags)

e

SYN/ACK
/

ACK

T

PSH/ACK

L)

~ Success rates ~ ACK

K —
HI TP 100% PSH/ACK

- Dy (response)

Server-side evasion results
B NULLTCP Flags

Client Server

SYN

T

%)
(no flags)

e

“_EEEZEEE—“

ACK

T

PSH/ACK

—fqwey)

~ Success rates ~ K
HT TP 100% PSH/ACK

.) (response)

Server-side evasion results
B NULLTCP Flags

Client Server

SYN

T

(%) .
o flags) | Server sends a packet with

— no TCP flags set

<G—EINZAEK—_—

ACK

T

PSH/ACK

—fqwey)

~ Success rates K
HT TP 100% PSH/ACK

. y (response)

~ SuCcess
HT TP

—

Server-side evasion results

Censor can’t handle
unexpected flags

rates —~

00%

NULL TCP Flags

Client

SYN

e

(%)
(no flags)

e

“_EETZAEE”’

ACK

T

PSH/ACK

—fqwey)

ACK

K

PSH/ACK

(response)

Server

Server sends a packet with
no TCP flags set

Server-side evasion results
Bl Double benign-GETs

Client Server

SYN

T

SYN/ACK

(benign GET

SYN/ACK
(benign GET
ACK

PSH/ACK
(query)

—

ACK |
LMK
PSH/ACK

(response)

Server-side evasion results
Bl Double benign-GETs

Client Server

SYN

T

SYN/ACK

W __________ . derver sends uncensored GETs
SYN/ACK inside two SYN/ACKs

ACK

ACK

PSH/ACK

(query)
—

ACK |
-
PSH/ACK

(response)

Server-side evasion results
Bl Double benign-GETs

Censor confuses
connhection direction

Client

SYN

T

SYN/ACK

e

SYN/ACK

(benign GET

ACK

PSH/ACK
(query)

ACK

—

PSH/ACK

(response)

LMK

Server

Server sends uncensored GETs
inside two SYN/ACKs

~ Success
HT TP

—

Server-side evasion results
Bl Double benign-GETs

Censor confuses
connhection direction

rates ~

00%

Client

SYN

T

SYN/ACK

e

SYN/ACK

(benign GET

ACK

PSH/ACK
(query)

ACK

—

PSH/ACK

(response)

LMK

Server

Server sends uncensored GETs
inside two SYN/ACKs

Server-side evasion results
Bl Double benign-GETs

Client Server

SYN

o

SYN/ACK

(benign GET

SYN/ACK

(benign GET
ACK

PSH/ACK
~ Success rates ~ (query)
HT TP 1007 P
- y PSH/ACK
(response)

<

Server-side evasion strategies

Client Server Client Server Client Server Client Server Client Server Client Server Client Server Client Server
SYN —SW_ SYN SYN SYN SYN SYN SYN
RST SYN SYN/ACK SYN/ACK FIN
T — | (bad ackno) (snf‘lz%?n%w (bad ackno) SYN/ACK | (Wioad — RoT
SN rapioad) “em e Ak | Pl SYN/ACK ‘W
oa
/ 4 SYN % SYN/ACK RST (bad ackno (bad ackno
SYN/ACK | (edackno) - | (edadne) -
—
SYN/ACR RST PSH/ACK RST RST RST
ACK . SYN/ACK
— | & SYN/ACK Hauery segment) ACK (/ load)
PSH/ACK PSH/ACK SYN/ACK SYN/ACK
—Gen) | ACK MK — Hquery segmen) | PoH/ACK ACK ACK ACK
ue, T T T
ACK PSH/ACK PSH/ACK — = PSH/ACK PSH/ACK PSH/ACK
| PSH/ACK (query) w ACK (query) (query) (query)
PSH/ACK query) — = Py T — — =
(response) ACK ACK PSH/ACK ACK ACK ACK
o | PRy | | (response) ‘m ‘m PSH/ACK
PSH/ACK PSH/ACK «—
China Res | (el (s
(response) «— | «—
— |
8 strategi
Client Server Client Server Client Server Client Server
SYN SYN SYN SYN
o oo T
SYN/ACK SYN/ACK SYN/ACK
(small window, (rand load) (benign GET, e
4/ «— | (no flags)
ACK (SYNd/;AC(IB SYN/Ig'ZK «—
) rand loa j ET,
Lo SYN/ACK
SYN/ACK «—
PSH/ACK
(w) % PSH/ACK ACK
el Feellmeellmeelimeel Feellmeellmelimeellireelmell WL PSH/ACK PSqI-zlté g():K
PSH/ACK ACK) q\»
T
WL PSH/ACK ACK ACK
ACK % «— —
ook ACK PSH/ACK PSH/ACK
PSH/ACK «— | *l'filff_si),__ (response)
et (response) PSH/ACK /
Fan/india - azakhstan
| (eromd

| strategy 3 strategies

Server-side evasion strategies

Client Server Client Server Client Server Client Server Client Server Client Server Client Server Client Server
SYN —SW_ SYN SYN SYN SYN SYN SYN
RST SYN SYN/ACK SYN/ACK FIN
T — | (bad ackno) (snf‘lz%?n%w (bad ackno) SYN/ACK | (Wioad — RoT
SN i) o N “ack Pl SYN/ACK ‘W
oa
/ ay. SYN % SYN/ACK RST (bad ackno (bad ackno
SYN/ACK | (edackno) - | (edadne) -
—
SYN/ACR RST PSH/ACK RST RST RST
ACK ; SYN/ACK
— | & SYN/ACK Hauery segment) ACK (/ load)
PSH/ACK PSH/ACK SYN/ACK SYN/ACK
—Gen) | ACK MK — Hquery segmen) | PoH/ACK ACK ACK ACK
ue, T T T
ACK PSH/ACK PSH/ACK — = PSH/ACK PSH/ACK PSH/ACK
«— | PSH/ACK (query) Hauery segment) ACK (query) (query) (query)
PSH/ACK —(en)) — |] T T ——
(response) ACK ACK PSH/ACK ACK ACK ACK
C o | PRy | | (response) ‘m ‘m PSH/ACK
PSH/ACK PSH/ACK «— |
h I n a PSH/ACK (response) (response) ‘w ‘w w
(response) «— | «—
— |
8 strategi
Client Server Client Server Client Server Client Server
SYN SYN SYN SYN
SYN/ACK SYN/ACK SYN/ACK
(small window, (rand load) (benign GET, e
4/ «— | (no flags)
ACK (SYNC{ZACCIB SYN/ACK «—
) rand loa jon GET,
(benigr SYN/ACK
SYN/ACK «—
PSH/ACK
| W)» e 2 %A %
(Q)) % PSH/ACK ACK
el Feellmeellmeelimeel Feellmeellmelimeellireelmell —WL PSH/ACK PSqI-zlté g():K
PSH/ACK ACK (query) q\»
T
WL PSH/ACK ACK ACK
ACK % «— —
ook ACK PSH/ACK PSH/ACK
PSH/ACK «— | *lrisiofsjj/ (response)
et (response) PSH/ACK /
Fan/india - azakhstan
| (eromd

| strategy 3 strategies

None of these require any client-side deployment

Windows XP
Windows /

Windows 8. |

Windows [0
Server 2003
Server 2008
Server 2013
Server 2018

Come as you are

OS X 10.14
OS X 10.15

OS 13,3

lﬁl

Android |0

a4

Centos 6
Centos /

C C C C

ountu

ountu

OUNTU

ODUNTU

2.04
4.04

6.04
3.04

This paper

Server-side evasion is possible

— For every country and protocol we tested

— Artifact-evaluated, open-source tool

This paper

New insights into how censors work

— GFW's resynchronization state

— "Multibox Theory”

Resynchronization State

Client Server

SYN

T

SYN/ACK

«— |
ACK

T

PSH/ACK

—Lwen)
Aﬂ/l
PSH/ACK

(response)

Censoring middleboxes
tolerant to packet loss

If middleboxes misses
a packet

Client

SYN

—

SYN/ACK

«— |
ACK

T

PSH/ACK

—(e)

ACK

K

PSH/ACK

(response)

Server

Resynchronization State

Censor can resynchronize
Its state

Censoring middleboxes
tolerant to packet loss

Resynchronization State
Simultaneous-open-based desynchronization

Client Server

SYN

T

SYN

N

SYN

s/ [— Payload from server triggers
resynchronization
SYN/ACK

ACK

ACK

PSH/ACK

—Lwen |

ACK

K

PSH/ACK

(response)

Resynchronization State
B Simultaneous-open-based desynchronization

Resynchronizes on SYN/ACK
from the client

Client

SYN

T

SYN

N

SYN
(payload)
4

ACK

ACK

PSH/ACK

—Ley)

ACK

K

PSH/ACK

(response)

Server

Payload from server triggers
resynchronization

Resynchronization State
B Simultaneous-open-based desynchronization

Resynchronizes on SYN/ACK.

from the client

...but does not properly

increment ISN

Client

-------- ™

SYN

T

SYN

PR

SYN
(payload)
m
ACK

ACK

PSH/ACK

—Ley)

ACK

K

PSH/ACK

(response)

Server

Payload from server triggers
resynchronization

Resynchronization State
B Simultaneous-open-based desynchronization

Client

Resynchronizes on SYN/ACK ...
from the client

...but does not properly

increment ISN

Off-by-1 bug in the Great Firewall

SYN

T

SYN

N

SYN
(payload)
m
ACK

ACK

PSH/ACK

—Ley)

ACK

K

PSH/ACK

(response)

Server

Payload from server triggers
resynchronization

Resynchronization State
B Simultaneous-open-based desynchronization

Client

Resynchronizes on SYN/ACK ...
from the client

...but does not properly

increment ISN

Off-by-1 bug in the Great Firewall

SYN

T

SYN

N

SYN
(payload)
m
ACK

ACK

PSH/ACK

—Ley)

ACK

K

PSH/ACK

(response)

Server

Payload from server triggers
resynchronization

Resynchronization State

GFW resynchronizes differently
depending on protocol

GFW Resynchronizes on the next:

Client packet if SYN+ACK

TP has a bad ack number

All but Client packet if server
HTTPS | sends aRST

All ACK packet if server sends
protocols| non-SYN-+ACK with a payload

New Model for Chinese Censorship

Strategy Success Rates
Description DNS FTP HTTP HTTPS SMTP
China
— No evasion 2% 3% 3% 3% 26%
1 Sim. Open, Injected RST 89% 52% 54% 14% 70%
2 Sim. Open, Injected Load 83% 36% 54% 55% 59%
3 Corrupt ACK, Sim. Open 26% 65% 4% 4% 23%
4 Corrupt ACK Alone 7% 33% 5% 5% 22%
5 Corrupt ACK, Injected Load | 15% 97% 4% 3% 25%
6 Injected Load, Induced RST| 82% 55% 52% 54% 55%
7 Injected RST, Induced RST | 83% 85% 54% 4% 66%
8 TCP Window Reduction 3% 47% 2% 3% 100%
India
— No evasion 100% 100% 2% 100% 100%
8 TCP Window Reduction - - 100% - -
Iran
— No evasion 100% 100% 0% 0% 100%
8 TCP Window Reduction - - 100% 100% -
Kazakhstan
— No evasion 100% 100% 0% 100% 100%
8 TCP Window Reduction - - 100% - —
9 Triple Load -~ - 100% -~ -~
10 Double GET - - 100% - —
11 Null Flags - - 100% - -

All of the server-side strategies

operate strictly during
the TCP 3-way handshake

New Model for Chinese Censorship

Strategy Success Rates
Description NS FTP HTTP HTTPS SMTP
China
— No evasion 2% 3% 3% 3% 26%
1 Sim. Open, Injected RST 89% 52% 54% 14% 70%
2 Sim. Open, Injected Load ||| 83% 36% 54% 55% 59%
3 Corrupt ACK, Sim. Open 26% 65% 4% 4% 23%
4 Corrupt ACK Alone 7% 33% 5% 5% 22%
5 Corrupt ACK, Injected Loac|| 15% 97% 4% 3% 25%
6 Injected Load, Induced RST| 82% 55% 52% 54% 55%
7 Injected RST, Induced RST || 83% 85% 54% 4% 66%
8 TCP Window Reduction 3% 47% 2% 3% 100%
India
— No evasion 100% 100% 2% 100% 100%
8 TCP Window Reduction — - 100% — -
Iran
— No evasion 100% 100% 0% 0% 100%
8 TCP Window Reduction — - 100% 100% —
Kazakhstan
— No evasion 100% 100% 0% 100% 100%
8 TCP Window Reduction — - 100% — -~
9 Triple Load -~ - 100% -~ -~
10 Double GET — - 100% — —
11 Null Flags -~ - 100% -~ -~

All of the server-side strategies

operate strictly during
the TCP 3-way handshake

So why are different applications
affected differently in China?

New Model for Chinese Censorship

Sane

New Model for Chinese Censorship

Sane Apparently what's happening

New Model for Chinese Censorship

Sane Apparently what's happening

New Model for Chinese Censorship

Sane Apparently what's happening

Results suggest GFW is running
multiple censoring middleboxes in parallel

Multi-box theory

Client . Server

Multi-box theory

DNS HTTP

FTP HTTPS

Multi-box theory

DNS HTTP

Client

FTP HTTPS

How does the censor know which
one to apply to a connection?

Multi-box theory

DNS HTTP

Client ©

FTP HTTPS

Not port number
Censors eftectively on any port

Multi-box theory

DNS HTTP

FTP HTTPS

Not port number
Censors eftectively on any port

Multi-box theory

DNS HTTP

FTP HTTPS

Not port number
Censors eftectively on any port

Multi-box theory

DNS HTTP

FTP HTTPS

Applies protocol fingerprinting

Multi-box theory

DNS HTTP

Client

FTP HTTPS

Applies protocol fingerprinting

Multi-box theory

DNS HTTP

Client

FTP HTTPS

Applies protocol fingerprinting

Multi-box theory

DNS HTTP

Oo |

:

Ry

Applies protocol fingerprinting

FTP HTTPS

Multi-box theory

DNS HTT
[Forbidden
Oo ' = ~

Applies protocol fingerprinting

Where are these middleboxes?

DNS HTTP

FTP HTTPS

Used TTL-limited probes

Where are these middleboxes?

DNS HTTP

ETP HTTPS

Used TTL-limited probes
Co-located at the network level

Responsive to new censorship events

February 2020: Iran launched a new system:a protocol filter

Filtered

Protocol Standard
Filter Censorship

O Blackhole
Not filtered

Responsive to new censorship events

February 2020: Iran launched a new system:a protocol filter

Censors connections that do not
match protocol fingerprints Filter Censorship

Filtered

O Blackhole
Not filtered

Responsive to new censorship events

February 2020: Iran launched a new system:a protocol filter

Censors connections that do not
match PI’OtOCOI ﬁngerprints Filter Censorship
' Filtered |

Those that do match are then
subjected to standard censorship

O Blackhole
Not filtered

Responsive to new censorship events

February 2020: Iran launched a new system:a protocol filter

Censors connections that do not
match protocol fingerprints Filter Censorship
Filtered |

Those that do match are then
subjected to standard censorship

O Blackhole
Not filtered

Geneva discovered 4 strategies to evade lran’s filter

* Responsive to new censorship events
July 29th 2020: China begins censoring the use of Encrypted SNI

-

Client ' / £

f Encrypted ' Forbidden
SNI' | | SNI

Server

_J

* Responsive to new censorship events
July 29th 2020: China begins censoring the use of Encrypted SNI

——

! Encrypted ' Forbidden
SNI' | | SNI

Server

_J

Geneva discovered 6 strategies to evade ESNI censorship

Real world deployment

Client 0C Server

Assist in bootstrapping connections -

Harden existing evasion protocols -

Middleboxes create new possibilities

[he gooc

[hey make server-sic
evasion possible!

Censoring regime

Middleboxes create new possibilities

[he gooc

[hey make server-side
evasion possible!

Censoring regime

The ugly

[hey have explortable
bugs and assumptions

Client

SYN

Server

%)
(no flags)

—>

—

»

SYN/ACK

—

<

ACK

5

Middleboxes create new possibilities

[he gooc

[hey make server-sic
evasion possible!

Clients

Middleboxes can be

weaponizec

‘Weaponizing Middleboxes for TCP Reflected Amplification

Kevin Bocl Abdulrahman Alaraj ‘air Fax*
. i

iversity of Maryland

Abstract

Reflective amplification attacks are a powerful tool in the
arsenal of a DDOS attacker, but to date have almost exclu-
sively targeted UDP-based protocols. In this pay
strate that non-trivial TCP-based amplification is possible and
can be orders of magnitude more effective than well-known

. By taking advantage of TCP-non-
< in network middleboxes, we show that attacker
can induce middleboxes to respond and amplify network traf-
fic. With the novel application of a recent genetic algorithm,
we discover and maximize the efficacy of new TCP-based
refiective amplification attacks, and present several packet
sequences that cause network middleboxes to respond with
substantially more packets than we send.

‘We scanned the entire TPv4 Internet to measure how many
TP addresses permit reflected amplification. We find hundreds
of thousands of IP addresses that offer amplification factors

. Through our Intemet-wide measurements

garding DoS attacks,

led “mega amplifiers”. We

also report on network phenomena that causes some of the

TCP-based attacks to be so effective as to technically have

infinite amplification factor (after the attacker sends a constant

iber of bytes, the reflector generates traffic ind

We have made our code publicly available.

1 Introduction

Volume-based distributed denial of service (DDoS) attacks
operate by producing more traffic at a victim’s network than
capacity permits, resulting in decreased throughput
limited availability. An important component in the arsenal of
aDDoS attacker is the ability to amplify is traffic. Instead of
sending traffic directly to a victim V, the attacker spoofs V’s
source address, sends b bytes to some amplifier host A, who
then “replies” to V' with a- b bytes for some &> 1. In this
manner, the attacker hides its IP address(es) from the victim,
naking it difficult o simply filterthe attack traffic at a irewall,
and increases its effective capacity by the amplification factor

e reflected amplification attacks can elicit impre
amplification factors. Among the most notable, DNS has be

shown to have an amplification factor of 54, while NTP offers
9 [32]. Misconfigured Memcached [37] servers can

USENIX Association

Kyle Hurley* Eric Wustrow’ Dave Levin
iversity of Colorado Boulder

W 00 00 10
1P Addross Rank

Figure 1: The maximum amplification factor we obtained per

1Pv4 address, based on several Internet-wide scans. (Note: the

axes are log-scale.)

provide amplifications over 51,000 [8, 401, and were used
against Github in 2018 in the largest known DDoS attack to

ige, the
s that send
uch attacks ap-
pear virtually impossible: to go bey
to require an attacker to (1) guess the amplifier’s 32-bit ini-
tial sequence number (ISN) in their SYN+ACK packet’ and
(2) prevent the victim from responding to the amplifier with a
RST [23].
Tnthis paper, we show that it is indeed possible to launch
reflected amplification attacks with TCP beyond a single SYN
nce numbers. The
s from the destination, but
n the path to the destination.
Many middleboxes (especially nation-state censors) inject
ck pages or other content (such as RST packets) [
42,46] into established TCP connections when they detect
forbidden requests. Moreover, because middleboxes cannot
rely on seeing all packets in a connection [7], they are often
igned to operate even when they see only one side of
the connection. Our attacks tend to leverage non-compliant
middleboxes that respond without having to observe both
r measurements show that such middleboxes are
surprisingly common on today’s Internet, and that they can

" We discuss non.refected TCP-based amplification atacks in Section
We wil use + o denote when asingle packet has mulliple TCP g

30th USENIX Security Symposium 3345

TCP-based

reflected
amplification

Client

They have ex
bugs and assumptions

The ugly

dblortable

Server

SYN/ACK

—

Middleboxes create new possibilities

[he gooc 1 he ugly

They make serversic Middleboxes can be [hey have explortable

evasion possible! weaponizec bugs and assumptions

Client Server

‘Weaponizing Middleboxes for TCP Reflected Amplification

Kevin Bock® Abdulrahman Alaraj’ Yair Fax* Kyle Hurley* Eric Wustrow” Dave Levin'
“University of Maryland *University of Colorado Boulder

Abstract ¢

flective amplification attacks are a powerful tool inthe 3
arsenal of a DDoS atiacker, but to date have almost exclu- £ 1
sively targeted UDP-based protocols. In this paper, we dem o

c ivia ed amplification is possible and 8

0 —

P-based P-non-

compliance in network we show that attackers - -
lleboxes to respond and amplify network traf- R

10

can induce midd) P Across ok
fic. With the novel application of a recent genetic algorithm,
we discover and maximize the efficacy of new TCP-based Figure 1: The maximum amplification factor we obtained per
reflective amplification atta sent several packet [Py address, based on several Internet-wide scans. (Note: the
sequences that cause network middleboxes to respond with 4
substantially more packets than we send.

‘We scanned the entire TPv4 Internet to measure how many
TP addresses permit reflected amplification. We find hundreds provide amplifications over 51,000 [8, 40], and were used
of thousands of IP addresses that offer amplification factors against Github in 2018 in the largest known DDoS attack to

greater than 100x. Through our Intemet-wide measurements, date, achieving 1.35 Tops at peak [14].

we explore several open questions regarding DoS attacks, To date, almost all eflected amplification attacks have lever-

including the root cause of so-called “mega amplifiers”. We aged UDP. In fact, to the best of our knowledge, there are no

also report on network phenomena that causes some of the known TCP-based reflected amplification attacks that send

TCP-based attacl e so effective as to technically have le SYN packet.’ This is because such attacks ap-

infinite amplification factor (after the attacker sends a constant pear virtually impossible: to go beyond the SYN would seem

number of bytes, the reflector generates traffic indefinitely). to require an attacker to (1) guess the amplifier’s 32-bit ini- —1

s are log

We have made our code publicly available. tial sequence number (ISN) in their SYN+ACK packet’ and
(2) prevent the victim from responding to the amplifier with a

" RST [23]
1 Introduction Tn this paper, we show that it is indeed possible to launch
Volume-based distributed denial of service (DDoS) attacks flected amplif tack th TCP beyond

acket without having to guess initial sequen
operate by producing more traffic at a vietim's network than Do 8 lo 8! !

ence numbers. The
its capacity permits, resulting in decreased throughput an “"‘“‘"‘““"“"“"“"“"‘:;‘j:"""’“'
limited availability. An important component in the arsenal of ©

0S attacker is the ability to amplify its traffic. any boxes (especialy nafion-sta
Sicealy o n vt 1, e aicle spoors ¥ ck pages or other content (such as
X e bytes 0 some amplior b 2,46] into established TCP conneetions when they detect
e i With . by for s 1 o A et Morover,becausemiddichores ot
manner, the attacker hides its LP address(es) from the victim, 1 seeing k o
making it diffcul o simply iterthe attack trafficata frewall, 4o~ o, ren when they sce only —

and increasesiseffecive capacity by the amplifation fuctor e L e e otwerve both

ISNs. Our measurements show that such middleboxes are
‘common on today’s Tnternet, and that they can

Some reflected amplification attacks can elicit impressive
amplification factors. Among the most notable, DNS has bex
shown to have an amplification factor of 54, while NTP offers "W dicuns o refected TCP-bed umplifiaion ks in Scton

9 [32]. Misconfigured Memeached [37] servers can We will s + o denote when ingle packet hasmliple TCP g

Clients

USENIX Association 30th USENIX Security Symposium

Automated tools like Geneva are important in
understanding what middleboxes enable

Server-side Evasion
l Geneva |
Genetic Evasion
Server-side evasion Is possible

New Insights Into censors

Code Is open source

Real world deployment

Geneva code and website | geneva.cs.umd.edu

