Come As You Are: Helping Unmodified Clients Bypass Censorship with Server-Side Evasion

George Hughey, Louis-Henri Merino, Tania Arya, Daniel Liscinsky, Regina Pogosian, Dave Levin

UNIVERSITY OF MARYLAND

Kevin Bock

Applied Networking Research Prize

Deep packet inspection

Deep packet inspection

8

Injecting tear-down packets

Spoofed tear-down packets

Injecting tear-down packets Requires per-flow state Censors necessarily take shortcuts

Injecting tea Requires Censors neces Evasion can take adv

- Injecting tear-down packets
 - Requires per-flow state
- Censors necessarily take shortcuts
- Evasion can take advantage of these shortcuts

Injecting tea Requires Censors neces

- Injecting tear-down packets
 - Requires per-flow state
- Censors necessarily take shortcuts
- Evasion can take advantage of these shortcuts

TTL=I

Injecting tea Requires Censors neces Evasion can take adv

- Injecting tear-down packets
 - Requires per-flow state
- Censors necessarily take shortcuts
- Evasion can take advantage of these shortcuts

TTL=I

Injecting tea Requires Censors neces Evasion can take adv

- Injecting tear-down packets
 - Requires per-flow state
- Censors necessarily take shortcuts
- Evasion can take advantage of these shortcuts

Injecting tea Requires Censors neces Evasion can take adv

TTL=0

- Injecting tear-down packets
 - Requires per-flow state
- Censors necessarily take shortcuts
- Evasion can take advantage of these shortcuts

Injecting tea Requires Censors neces Evasion can take adv

- Injecting tear-down packets
 - Requires per-flow state
- Censors necessarily take shortcuts
- Evasion can take advantage of these shortcuts

Injecting tea Requires Censors neces Evasion can take adv

- Injecting tear-down packets
 - Requires per-flow state
- Censors necessarily take shortcuts
- Evasion can take advantage of these shortcuts

Censoring regime

Censoring regime

Installing software can pose risks to the user

Censoring regime

Installing software can pose risks to the user

Cannot help users who do not know they are censored

Ideally, servers could help

Censoring regime

Server-side evasion

Censoring regime

Server-side evasion

Censoring regime

Software

Potentially broadens reachability without any client-side deployment

Server-side evasion "shouldn't" work

Server-side evasion "shouldn't" work

Censored keyword

Server-side evasion "shouldn't" work

Censored keyword

- ''Multibox Theory''

Server-side evasion is possible

For every country and protocol we tested

Artifact-evaluated, open-source tool

New insights into how censors work

GFW's resynchronization state

Server-side evasion is possible

For every country and protocol we tested

Artifact-evaluated, open-source tool

New insights into how censors work

Geneva Genetic Evasion

7

Geneva runs strictly at one side

Geneva Genetic Evasion

Geneva Genetic Evasion

Alter or corrupt any TCP/IP header field

No semantic understanding of what the fields mean

.

Manipulates packets to and from the client

Fragment (IP) or Segment (TCP)

Geneva Genetic Evasion

Alter or corrupt any TCP/IP header field

No semantic understanding of what the fields mean

Geneva Genetic Evasion

This paper: Server-side Geneva

Modified Geneva to run server-side ...!

Server

Deployed against real world censors

Diversity of protocols

Diversity of protocols

HTTP HTTPS DNS FTP

Forbidden keywords & domains

SMTP

Diversity of protocols

HTTP HTTPS DNS FTP

Forbidden keywords & domains

SMTP

xiazai@upup.info

Diversity of censors

Injects TCP RSTs

Injects & blackholes

Injects & blackholes

Injects a block page

★** China

(Ŭ) Iran

Kazakhstan

Diversity of protocols

HTTP HTTPS DNS FTP SMTP

Server-side evasion "shouldn't" work

Censor de-synchronizes

Server-side evasion strategies

Kazakhstan 3 strategies

Client Server	Client	Server	Client	Server
SYN SYN/ACK (rand load) SYN/ACK (rand load) ACK ACK ACK PSH/ACK (query) ACK PSH/ACK (response)	SYI (beni SYI (beni PSI (q	SYN N/ACK gn GET) N/ACK gn GET) ACK ACK H/ACK H/ACK sponse)	SYN, Au PSH, (resp	YN a Clags) /ACK /ACK ery) CK /ACK onse)

Server-side evasion results NULL TCP Flags

Server-side evasion results NULL TCP Flags

Server-side evasion results NULL TCP Flags

Server sends a packet with no TCP flags set

Censor can't handle unexpected flags

Success rates -HTTP 100%

Server-side evasion results NULL TCP Flags

Server sends a packet with no TCP flags set

Server-side evasion results Double benign-GETs

Server-side evasion results Double benign-GETs

Server sends uncensored GETs inside two SYN/ACKs

Censor confuses connection direction

Server-side evasion results Double benign-GETs

Server sends uncensored GETs inside two SYN/ACKs

Censor confuses connection direction

Success rates -HTTP 100%

Server-side evasion results Double benign-GETs

Server sends uncensored GETs inside two SYN/ACKs

Server-side evasion results Double benign-GETs

Server-side evasion strategies

Kazakhstan 3 strategies

Server-side evasion strategies

None of these require any client-side deployment

3 strategies

Windows XP Windows 7 Windows 8.1 Windows 10 Server 2003 Server 2008 Server 2013 Server 2018

iOS | 3.3

Centos 6 Centos 7

Ubuntu 12.04 Ubuntu 14.04 Ubuntu 16.04 Ubuntu 18.04

Server-side evasion is possible

For every country and protocol we tested

Artifact-evaluated, open-source tool

New insights into how censors work

GFW's resynchronization state

– "Multibox Theory"

Server-side evasion is possible

New insights into how censors work

Resynchronization State

Censoring middleboxes tolerant to packet loss

Censoring middleboxes tolerant to packet loss

Resynchronization State

Client

Client

Resynchronizes on SYN/ACK from the client

★*

Client

Resynchronizes on SYN/ACK . from the client

...but does not properly increment ISN

Client

Resynchronizes on SYN/ACK ... from the client

...but does not properly increment ISN

Off-by-1 bug in the Great Firewall

Client

Resynchronizes on SYN/ACK ... from the client

★**

...but does not properly increment ISN

Off-by-1 bug in the Great Firewall

Resynchronization State

GFW Resynchronizes on the next:

GFW resynchronizes differently depending on protocol

Client packet if SYN+ACK has a bad ack number

Client packet if server sends a RST

ACK packet if server sends non-SYN+ACK with a payload

Strategy		Success Rates					
#	Description	DNS	FTP	HTTP	HTTPS	SMT	
China							
1	No evasion	2%	3%	3%	3%	26	
1	Sim. Open, Injected RST	89%	52%	54%	14%	70	
2	Sim. Open, Injected Load	83%	36%	54%	55%	59	
3	Corrupt ACK, Sim. Open	26%	65%	4%	4%	23	
4	Corrupt ACK Alone	7%	33%	5%	5%	22	
5	Corrupt ACK, Injected Load	15%	97%	4%	3%	25	
6	Injected Load, Induced RST	82%	55%	52%	54%	55	
7	Injected RST, Induced RST	83%	85%	54%	4%	66	
8	TCP Window Reduction	3%	47%	2%	3%	100	
Indi	a						
1	No evasion	100%	100%	2%	100%	100	
8	TCP Window Reduction	-	-	100%	_		
Iran	!						
1	No evasion	100%	100%	0%	0%	100	
8	TCP Window Reduction	_	—	100%	100%		
Kaz	akhstan						
	No evasion	100%	100%	0%	100%	100	
8	TCP Window Reduction	-	-	100%	-		
9	Triple Load	-	-	100%	_		
10	Double GET	-	—	100%	_		
11	Null Flags	_	_	100%	_		

All of the server-side strategies operate strictly during the TCP 3-way handshake

Strategy		Success Rates					
#	Description	DNS	FTP	HTTP	HTTPS	SMT	
China							
1	No evasion	2%	3%	3%	3%	26	
1	Sim. Open, Injected RST	89%	52%	54%	14%	70	
2	Sim. Open, Injected Load	83%	36%	54%	55%	59	
3	Corrupt ACK, Sim. Open	26%	65%	4%	4%	23	
4	Corrupt ACK Alone	7%	33%	5%	5%	22	
5	Corrupt ACK, Injected Load	15%	97%	4%	3%	25	
6	Injected Load, Induced RS7	82%	55%	52%	54%	55	
7	Injected RST, Induced RST	83%	85%	54%	4%	66	
8	TCP Window Reduction	3%	47%	2%	3%	100	
Indi	a						
1	No evasion	100%	100%	2%	100%	100	
8	TCP Window Reduction	-	-	100%	_		
Iran							
1	No evasion	100%	100%	0%	0%	100	
8	TCP Window Reduction	-	_	100%	100%		
Kaz	akhstan						
-	No evasion	100%	100%	0%	100%	100	
8	TCP Window Reduction	-	_	100%	_		
9	Triple Load	_	_	100%	_		
10	Double GET	-	—	100%	_		
11	Null Flags	-	_	100%	_		

All of the server-side strategies operate strictly during the TCP 3-way handshake

So why are different applications affected differently in China?

Apparently what's happening

Apparently what's happening

Apparently what's happening

Results suggest GFW is running multiple censoring middleboxes in parallel

GFW

How does the censor know which one to apply to a connection?

Not port number Censors effectively on any port

Not port number Censors effectively on any port

Not port number Censors effectively on any port

Where are these middleboxes?

Used TTL-limited probes

Where are these middleboxes?

Used TTL-limited probes Co-located at the network level

Responsive to new censorship events

February 2020: Iran launched a new system: a protocol filter

Censors connections that do not match protocol fingerprints

Responsive to new censorship events

February 2020: Iran launched a new system: a protocol filter

February 2020: Iran launched a new system: a protocol filter

Censors connections that do not match protocol fingerprints

Those that do match are then subjected to standard censorship

Responsive to new censorship events

February 2020: Iran launched a new system: a protocol filter

Censors connections that do not match protocol fingerprints

Those that do match are then subjected to standard censorship

Geneva discovered 4 strategies to evade Iran's filter

Responsive to new censorship events

Responsive to new censorship events

July 29th 2020: China begins censoring the use of Encrypted SNI

Geneva discovered 6 strategies to evade ESNI censorship

Responsive to new censorship events

July 29th 2020: China begins censoring the use of Encrypted SNI

Real world deployment

Assist in bootstrapping connections "

Harden existing evasion protocols...

Censoring regime

The good

They make server-side evasion possible!

Censoring regime

The ugly They have exploitable bugs and assumptions

Censoring regime

USENIX Security '2 I

The very bad

Middleboxes can be weaponized

The ugly They have exploitable bugs and assumptions

TCP-based reflected amplification

USENIX Security '2 I

The very bad

Middleboxes can be weaponized

The ugly They have exploitable bugs and assumptions

TCP-based reflected amplification

Automated tools like Geneva are important in understanding what middleboxes enable

Server-side Evasion

Server-side evasion is possible New insights into censors Code is open source Real world deployment

Geneva code and website geneva.cs.umd.edu

Geneva Genetic Evasion

