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Evasion has always involved the client

Censoring regime

Installing software can
pose risks to the user

Cannot help users who do not
know they are censored
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depending on protocol
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New Model for Chinese Censorship

Strategy Success Rates
# Description DNS FTP HTTP HTTPS SMTP
China
— No evasion 2% 3% 3% 3%  26%
1 Sim. Open, Injected RST 89% 52%  54% 14%  70%
2 Sim. Open, Injected Load 83% 36% 54% 55%  59%
3 Corrupt ACK, Sim. Open 26% 65% 4% 4%  23%
4 Corrupt ACK Alone 7% 33% 5% 5%  22%
5 Corrupt ACK, Injected Load | 15% 97% 4% 3% 25%
6 Injected Load, Induced RST| 82% 55% 52% 54%  55%
7 Injected RST, Induced RST | 83% 85%  54% 4%  66%
8 TCP Window Reduction 3% 47% 2% 3% 100%
India
— No evasion 100% 100% 2% 100% 100%
8 TCP Window Reduction - - 100% - -
Iran
— No evasion 100% 100% 0% 0% 100%
8 TCP Window Reduction - - 100% 100% -
Kazakhstan
— No evasion 100% 100% 0% 100% 100%
8 TCP Window Reduction - - 100% - —
9 Triple Load -~ - 100% -~ -~
10 Double GET - - 100% - —
11 Null Flags - - 100% - -

All of the server-side strategies

operate strictly during
the TCP 3-way handshake
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All of the server-side strategies
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So why are different applications
affected differently in China?
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New Model for Chinese Censorship

Sane Apparently what's happening

Results suggest GFW is running
multiple censoring middleboxes in parallel



Multi-box theory

Client . Server




Multi-box theory

DNS HTTP

FTP HTTPS



Multi-box theory

DNS HTTP

Client

FTP HTTPS

How does the censor know which
one to apply to a connection?
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Where are these middleboxes?

DNS HTTP

ETP HTTPS

Used TTL-limited probes
Co-located at the network level
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Responsive to new censorship events

February 2020: Iran launched a new system:a protocol filter
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Geneva discovered 4 strategies to evade lran’s filter
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Geneva discovered 6 strategies to evade ESNI censorship



Real world deployment
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Assist in bootstrapping connections -

Harden existing evasion protocols -
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‘Weaponizing Middleboxes for TCP Reflected Amplification
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Abstract

Reflective amplification attacks are a powerful tool in the
arsenal of a DDOS attacker, but to date have almost exclu-
sively targeted UDP-based protocols. In this pay
strate that non-trivial TCP-based amplification is possible and
can be orders of magnitude more effective than well-known

. By taking advantage of TCP-non-
< in network middleboxes, we show that attacker
can induce middleboxes to respond and amplify network traf-
fic. With the novel application of a recent genetic algorithm,
we discover and maximize the efficacy of new TCP-based
refiective amplification attacks, and present several packet
sequences that cause network middleboxes to respond with
substantially more packets than we send.

‘We scanned the entire TPv4 Internet to measure how many
TP addresses permit reflected amplification. We find hundreds
of thousands of IP addresses that offer amplification factors

. Through our Intemet-wide measurements

garding DoS attacks,

led “mega amplifiers”. We

also report on network phenomena that causes some of the

TCP-based attacks to be so effective as to technically have

infinite amplification factor (after the attacker sends a constant

iber of bytes, the reflector generates traffic ind

We have made our code publicly available.

1 Introduction

Volume-based distributed denial of service (DDoS) attacks
operate by producing more traffic at a victim’s network than
capacity permits, resulting in decreased throughput
limited availability. An important component in the arsenal of
aDDoS attacker is the ability to amplify is traffic. Instead of
sending traffic directly to a victim V, the attacker spoofs V’s
source address, sends b bytes to some amplifier host A, who
then “replies” to V' with a- b bytes for some &> 1. In this
manner, the attacker hides its IP address(es) from the victim,
naking it difficult o simply filterthe attack traffic at a irewall,
and increases its effective capacity by the amplification factor

e reflected amplification attacks can elicit impre
amplification factors. Among the most notable, DNS has be

shown to have an amplification factor of 54, while NTP offers
9 [32]. Misconfigured Memcached [37] servers can
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Figure 1: The maximum amplification factor we obtained per

1Pv4 address, based on several Internet-wide scans. (Note: the

axes are log-scale.)

provide amplifications over 51,000 [8, 401, and were used
against Github in 2018 in the largest known DDoS attack to

ige, the
s that send
uch attacks ap-
pear virtually impossible: to go bey
to require an attacker to (1) guess the amplifier’s 32-bit ini-
tial sequence number (ISN) in their SYN+ACK packet’ and
(2) prevent the victim from responding to the amplifier with a
RST [23].
Tnthis paper, we show that it is indeed possible to launch
reflected amplification attacks with TCP beyond a single SYN
nce numbers. The
s from the destination, but
n the path to the destination.
Many middleboxes (especially nation-state censors) inject
ck pages or other content (such as RST packets) [
42,46] into established TCP connections when they detect
forbidden requests. Moreover, because middleboxes cannot
rely on seeing all packets in a connection [7], they are often
igned to operate even when they see only one side of
the connection. Our attacks tend to leverage non-compliant
middleboxes that respond without having to observe both
r measurements show that such middleboxes are
surprisingly common on today’s Internet, and that they can

" We discuss non.refected TCP-based amplification atacks in Section
We wil use + o denote when asingle packet has mulliple TCP g
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greater than 100x. Through our Intemet-wide measurements, date, achieving 1.35 Tops at peak [14].

we explore several open questions regarding DoS attacks, To date, almost all eflected amplification attacks have lever-
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Automated tools like Geneva are important in
understanding what middleboxes enable
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