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We use A/B tests to see if an algorithm works in practice
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What is an A/B test?

1. Randomly assign traffic to

treatment/control
(users, sessions, servers, etc...)

2. Collect data

. Treatment:
Control . New algorithm

3. Compare outcomes

Better performance

Good performance

\ “Algorithm improves

”
!

performance



A/B tests are used to generalize

We make decisions about deploying algorithms based on small A/B tests:

“This algorithm improves performance by 10%”

This assumes that the outcome of one unit does not depend on other units

\

This is called interference




Examples of interference
Lots of examples from causal inference

Social networks: a treatment that increases usage might also cause increased usage
for friends in the control group.

Online auctions/markets: if treatment/control users bid against each other, making
treated users more likely to win means that control users are more likely to lose.

And many more!



Interference exists in congested networks

Shared Queue

Treatment > Shared
Control Link




Interference raises two questions

1. Does it matter?
2. What can we do about it?



Interference can make A/B tests extremely misleading

We ran an experiment which demonstrates this.



Treatment: capping bitrate to reduce traffic

In response to COVID-19, Netflix reduced ° S
traffic by 25% by capping bitrates.

Netflix to cut streaming quality
in Europe for 30 days

020 | & Comments

Capping bitrates means that Netflix will not J
serve the highest quality versions of a video < —




Videos are encoded at many different qualities

High quality

Mid quality

Low quality

i




Bitrate capping limits video quality we can send
ik el

Segment1  Segment2

Mid quality

Low quality
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What could A/B tests look like with bitrate capping?

Originally:

Link is congested

Congested Link

With Capping:

Link is not congested

Uncongested Link

Capping causes:
e Less bandwidth used
e Less congestion

One possibility:

Bitrate capping reduces congestion

Uncongested Link

Capped
Control

A/B test results:

Capped uses less bandwidth

Level of congestion is the
X same (no congestion)

Another possibility:
Control traffic increases, link stays
congested

Congested Link

Capped
Control

A/B test results:
Capped uses less bandwidth

Level of congestion is the
X same (some congestion)

A/B tests results do not reveal what

happens when we cap traffic



Imagine control throughput increases as traffic is capped

Per-session throughput

o——Capped

O 25 50 75 100
% Capped Traffic



We want to measure the effect of capping

Per-session throughput

Control/o
o——Capped O
0 25 50 75 100

% Capped Traffic



A/B tests look at one point on this graph

Per-session throughput

o——Capped

O 25 50 75 100
% Capped Traffic



A/B tests give biased estimates of total treatment effects

Per-session throughput

Control/o
/ I Bias of 50% A/B test
o——Capped
O 25 50 75 100

% Capped Traffic



With two measurements, we can measure capping effects
and A/B test bias

Per-session throughput

D

®

o——Capped

O 25 50 75 100
% Capped Traffic



Comparing A/B tests with a pair of congested links

Found two reliably congested peering links with
well-balanced traffic Treatment

Run two A/B tests on each link and compare:
e Link 1: 95% capped, 5% uncapped
e Link 2: 5% capped, 95% uncapped




Capping improves throughput, despite A/B test results

Normalized Throughput

117% T
I 95% A/B Test

112% Control--- L

% et Capped
100% I 5%.AfB Test
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5% Capped 95% Capped
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A/B tests are also wrong about effects on RTT

Normalized RTT

112% -
I 5% A/B Test
100% &... e
Control ... " Capped

76% e 3 95% A/B Test
71%

5% Capped 95% Capped

(Link 2) (Link 1)



Per-session Throughput results

Throughput decreases during
congested peak hours

Before experiment

Normg{ized A

— =T

verage Throughput

Peak hours

0.5

0.0

— Link 1: 100% uncapped — Link 2: 100% uncapped

00 02 04 06 08 10 12 14 16 18 20 22 00 02
Hour

Two links have identical throughput
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Capping delays the onset of
congestion for capped link

During experiment

1 ONormah’zed Average Throughput

’ Pegk hours
0.5 w

0.0 Link 1: 5% uncapped — Link 2: 5% capped
— Link 1: 95% capped — Link 2: 95% uncapped

00 02 04 06 08 10 12 14 16 18 20 22 00 02
Hour

Behavior is similar within a link



A/B tests do not reliably estimate TTE

Metric Total Treatment Effect A/B Test

Round Trip Time

Throughput

Play Delay Did not change

and more in the paper...




A/B tests are biased when run in congested networks

This is concerning!



Risks of congestion interference

Common development process:
1. Come up with idea

2. Implementidea
. . Could give up too early on a good idea, or
3. A/B testidea continue with an approach that doesn’t work

4. [terate

°. Deploy idea \ Could deploy things that don’t work as expected, leading

to production issues or longer development time



We can run experiments that remove bias

Paired link experiment is just one example

In the paper we also discuss:
e Event studies
e Switchback experiments



Use event studies when deploying changes

Switch most traffic to treatment and
compare before/after

Pros: Normalized Average Throughput
. Link 1: 5% uncapped —— Link 2: 5% capped
e Estimates TTE i —— Link 1: 95%capz2d Link 2: 95%u?123pped
e Easyto dowhen deploying changes \\MW
0 Thu Fri Sat Sun
Cons: Mot

e Seasonality issues
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Use switchbacks for more accurate measurements

Switch back and forth between

treatment/control
Pros:
. Normalized Average Throughput
¢ EStImateS TTE Link 1: 5% uncapped Link 2: 5% capped
e More robust to seasonality 1\/‘;\;17%]7%7\”;
Cons: 0 _
Thu Fri Sat Sun

e Carryover effects Hour
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Lots more to be done!

e Any A/B test using a congested network has the
possibility of bias

e We encourage more measurement to tell if interference
matters for your experiments.

e We would love to see total treatment effects measured
for new algorithms

e Need for better experiment methodology for networks

Thank you!
Email: bspang@stanford.edu




