

Taurus: A Data Plane Architecture for Per-Packet ML

Tushar Swamy

Alexander Rucker, Muhammad Shahbaz, Ishan Gaur, and Kunle Olukotun

Stanford University

Datacenter networks are becoming harder to manage...

Gur current generation — Jupiter fabrics — can deliver more than 1 Petabit/sec of total bisection bandwidth

– A Look Inside Google's Data Center Networks¹

Networks require complex management with high performance

Automate decision-making with machine learning (ML)

- Making decisions based on data --> machine learning
- Machine learning can:
 - **Approximate** network functions based on data
 - **Customize** network functions based on data
- Currently, we use by hand-written heuristics in the network...

Where in the network should ML happen?

Software Defined Network

A Taurus network introduces ML for management

Software Defined Network

Control Plane Control Plane Policy Creation (Flow Rules + ML Policy Creation (Flow Rules) Training) Packet Flow Packet Flow MI model Rule Digest Rule Digest weights **Data Plane Data Plane** Packet Forwarding (Match Action) Packet Forwarding (Match Action) + Decision Making (ML Inference) Packets In Packets Out Packets In Packets Out

Software Defined Network

with Taurus

ML inference should happen *per-packet* in the *data plane*

Example: Anomaly Detection

Processing time: **1.5hms** Packets missed: **1000**

1.5 M Packets missed during *flow rule installation time*

Robustness and performance of the network are determined by:

Quality of reaction Speed of reaction

ML training happens in the control plane

Software Defined Network with Taurus

ML Training is off critical path

ML Inference happens in the data plane

10

Software Defined Network with Taurus

Taurus is an architecture for per-packet ML inference in the data plane

11

What do programmable switches look like?

A Protocol Independent Switch Architecture (PISA)

What abstraction should we use?

- *Map-reduce* can support linear algebra operations common in ML algorithms
 - Ex. Operations) Dot products, matrix multiplications, etc.
 - Ex. Algorithms) Neural networks, support vector machines

What abstraction should we use?

- **SIMD Parallelism** enables performance with minimal logic
 - VLIW pipelines require too much communication hardware (e.g Tofino)
- Unrolling patterns allows for flexibility

14

- More unrolling better performance
- Less unrolling →less resource usage

The Taurus pipeline with a Map Reduce Unit

- Map Reduce Unit must:
 - be reconfigurable
 - meet line rate (with a fixed clock)
 - incur minimal area and power overhead

Example Application: Anomaly Detection

Evaluation of a Taurus ASIC

- Our evaluation platform is based on *Plasticine*
- We program our map-reduce applications in the **Spatial HDL**

More architectural details in full paper!

Evaluation of a Taurus ASIC

- Our evaluation platform is based on *Plasticine*
- We program our map-reduce applications in the **Spatial HDL**

	Area					
Hardware	mm ²	+%				
12x10 MR Grid	4.8 x 4	3.8				
Prog. Switch	500					

*Overheads are calculated relative to state of the art programmable switches

Evaluation of an Anomaly Detection (AD) benchmark

- AD SVM: 8 support vectors
- AD DNN: 4 layers 12x6x3x2 neurons

Overhe	ead of Map Red	Area	Power	
Model	TP (GPkt/s)	Lat (ns)	+%	+%
SVM	1	83	0.5	0.6
DNN	1	221	0.8	1.0

*Overheads are calculated relative to state of the art programmable switches

More apps in full paper!

We provide an open-source, FPGA-based testbed

FPGA-based testbed evaluations

- **FPGA Testbed** enables both control plane ML (baseline) and data plane ML (Taurus) evaluations
- *ML anomaly detection* is evaluated on both control plane and data plane
- Control plane latency directly affects the accuracy of the ML model, rendering it useless

	Batc	h Size		Baseline Latency (ms))	Detecte	Detected (%)		F1 Score	
Sampling	XDP	Rem.	X	P D	B MI	Insta	1	All	Baseline	Taurus	Baseline	Taurus
10 ⁻⁵	1	5		3 1	4 16	2	I.	34	0.781	58.2	1.549	71.1
10^{-4}	2	33		2 1	7 18	4		41	2.553	58.2	4.944	71.1
10^{-3}	17	637		3 9	2 28	38		95	0.015	58.2	0.031	71.1
10^{-2}	2935	4570	20	1 14	1 59	112		512	0.000	58.2	0.001	71.1

Tushar Swamy

tswamy@stanford.edu

Read the paper: https://dl.acm.org/doi/10.1145/3503222.3507726

Try it out! <u>https://gitlab.com/dataplane-ai/taurus</u>