United We Stand: Collaborative Detection and Mitigation of Amplification DDoS Attacks at Scale

Daniel Wagner_{1,2}

Daniel Kopp₁, Matthias Wichtlhuber₁, Christoph Dietzel_{1,2}, Oliver Hohlfeld₃,

Georgios Smaragdakis⁴ and Anja Feldmann²

Distributed Denial of Service (DDoS)

- Network attack causing service downtime
- Targets: Financial services, health sector, ...

Microsoft fends off record-breaking 3.47Tbps DDoS attack

While a crude brute-force attack, DDoSes are growing ever more potent. DAN GOODIN - 1/28/2022 12:45 PM

Largest DDoS attack ever reported gets hoovered up by Cloudflare

Shan

Porter Augur 20, 202 by Field Aven

tine between the bart conscious constant stationers reduced tected and mitigated \$17.2 m Woh request-perpective. The company reports that this is three times

> rusing a service by making it so busy it either crashes with spurpus requests from multiple, distributed

OoS is blocking the door by boarding it up from the

mor of Cloudflare in the financial sector Cloudflare

BY DUNCAN RILEY

UPDATED 21:08 EST / FEBRUARY 23 2022

Amplification DDoS Attacks

Contributions (1/3)

- Distance analysis
 - #hops from refelctor?
 - #hops to target?

Reflectors

Contributions (2/3)

- Distance analysis
 - #hops from refelctor?
 - #hops to target?
- Collaboration benefit

Reflectors

Contributions (3/3)

- Distance analysis
 - #hops from refelctor?
 - #hops to target?
- Collaboration benefit
- Information exchange platorm

Contributions (3/3)

- Distance analysis
 - #hops from refelctor?
 - #hops to target?
- Collaboration benefit
- Information exchange platorm
- Let's leverage some data!

Reflectors

Data Set

• Flow data from 11 IXPs, April 2020 – October 2020

IXP Code	#Networks	Peak traffic	Region	#sampled Flows
CE1	>900	>9000 Gb/s	Central Europe	1.08 Trillion
CE2	>200	>150 Gb/s	Central Europe	9.9 Billion
CE3	>200	>150 Gb/s	Central Europe	3.2 Billion
CE4	>200	>100 Gb/s	Central Europe	3.6 Billion
NA1	>200	>800 Gb/s	North America	78 Billion
NA2	>75	>150 Gb/s	North America	16.7 Billion
SE1	>175	>400 Gb/s	South Europe	30.5 Billion
SE2	>75	>100Gb/s	South Europe	12.2 Billion
SE3	>40	>10 Gb/s	South Europe	2.2 Billion
SE4	>30	>100 Gb/s	South Europe	17.9 Billion
SE5	>20	>50 Gb/s	South Europe	2 Billion

Traffic Filtering

- UDP only
- Filtering for typical DDoS amplification protocols^[2]
- Packet size^[2]

Protocol	Chargen	DNS	RPC	NTP	SNMP	CLDAP	OpenVPN	SSDP	ARMS	WS Discovery	Device Discovery	memcached
Transport port	19	53	111	123	161	389	1194	1900	3283	3702	10001	11211

Attack Detection

- Global attack traffic with n>=10 reflectors, t>1Gbps attack traffic
- We identified >120k DDoS attacks
- Including confirmed attacks

Number of DDoS Attack Events per Day

• Thousands of attacks every day!

Case study: Attack to Akamai

1.44 Tbps and 385 Mpps DDoS Attack Mitigated by Akamai ^[1]

[1] "Akamai Mitigates Sophisticated 1.44 Tbps and 385 Mpps DDoS Attack", Akamai.com

Case study: Attack to Akamai

[1] "Akamai Mitigates Sophisticated 1.44 Tbps and 385 Mpps DDoS Attack", Akamai.com

The later

Alumnai I specimen the Liber

Case study: Attack to Akamai

[1] "Akamai Mitigates Sophisticated 1.44 Tbps and 385 Mpps DDoS Attack", Akamai.com

Alumnai I specimen the Liber

How accurate are we? (1/2)

- Compare found events to bengin data
 - Traffic to IP addresses that was
 - Caught by the filter
 - Not caught by the detection mechansism
 - Compare traffic characteristics
 - Geographical distribution and port combinations

Benign Traffic vs. Attacks: Sites / Ports

Diversity [Sites/Ports/SitePortCombinations]

Self-Attacks: Features and Clustering

the first 4 PCAs

19

How accurate are we? (2/2)

• Compare found events to bengin data

- Traffic to IP addresses that was
 - Caught by the filter
 - Not caught by the detection mechansism
- Compare traffic characteristics
- Geographical distribution and port combinations

• Fire up self-attacks to get ground truth

- Derive and compare features
- Compare packet sizes

Contributions (1/3)

- Distance analysis
 - #hops from refelctor?
 - #hops to target?
- Collaboration benefit
- Information exchange platorm

- Hops counted from IXP's RS
- About 45% of attack traffic originates from a direct neighbor
- About 70% of attack traffic's destination is just two hops away

Contributions (2/3)

- Distance analysis
 - #hops from refelctor?
 - #hops to target?
- Collaboration benefit
- Information exchange platorm

Reflectors

Attack Events

• Ground truth of combined data

Attack Events

- Ground truth of combined data
- Versus local detectable attack traffic

Collaboration benefit

Collaboration benefit

• Up to ~80% of attacks locally undetected ("missed")

Collaboration benefit

- Up to ~80% of attacks locally missed (100mb/s)
- Up to ~90% of attacks locally missed (1Gb/s)

Contributions (3/3)

- Distance analysis
 - #hops from refelctor?
 - #hops to target?
- Collaboration benefit
- Information exchange platform

- Governance body
- Defines filters and thresholds
- Builds community
- Handles SLAs
- Processes abuse cases

- Members pull and push rules from / to the DXB
- Apply filters
- Choose a trust scenario

- Low trust:
 - Reflector's IP shared
 - Semi-sensitive
- High trust:
 - All information shared
 - Scr/dst IP & port
 - Traffic volume
 - Duration

••••

DXP Evaluation: Low Trust - High Trust

• Quantification of DDoS origin distribution

• About 50% of attacks in >=3 locations, about 25% in >=5 locations

- Quantification of DDoS origin distribution
 - About 50% of attacks in >=3 locations, about 25% in >=5 locations
- Quantification of collaboration benefit
 - >80% of the globally detectable attacks are not detected locally

- Quantification of DDoS origin distribution
 - About 50% of attacks in >=3 locations, about 25% in >=5 locations
- Quantification of collaboration benefit
 - >80% of the globally detectable attacks are not detected locally
- Emphasis on IXP's critical role for DDoS mitigation
 - About 45% of the reflectors and about 30% of the targets are an IXP member

- Quantification of DDoS origin distribution
 - About 50% of attacks in >=3 locations, about 25% in >=5 locations
- Quantification of collaboration benefit
 - >80% of the globally detectable attacks are not detected locally
- Emphasis on IXP's critical role for DDoS mitigation
 - About 45% of the reflectors and about 30% of the targets are an IXP member
- Collaboration platform proposal and evaluation
 - DXP
 - Up to 90% more attack traffic detectable at a site due to collaboration

(Backup Slides)

Distance / geographical distribution analysis

Features

Feature Class	Feature Count	Description
Sites	1	Number of sites involved in the attack
Ports	1	Number of source transport ports involved in the attack
SitesPorts	1	Sum of source transport ports seen at the sites, where the attack is visible
Dur	1	Total duration of the attack in minutes
DurAttack	1	Duration in minutes where the attack volume is greater than t (In our study: 1 Gbps)
TotalMbps	1	Volume of the attack in Mbps, summed across all sites and all source transport ports
TotalMbpsAttack	1	Volume of the attack in Mbps, summed across all sites and all source transport ports,
		while the volume is greater than <i>t</i>
TotalPeakMbps	1	Peak of the attack volume in Mbps, summed across all sites and all source transport
		ports
Peak Mbps	1	Peak of the attack volume in Mbps, single site, single source transport port
TotalMbpsCE1	1	Sum of the attack traffic across all source transport ports in Mbps, seen at site CE1
TotalMbpsAttackCE1	1	Sum of the attack volume across all source transport ports in Mbps, seen at site CE1
		while exceeding <i>t</i>
TotalPeakMbpsCE1	1	Peak attack volume across all source transport ports, seen at site CE1, in Mbps
PeakMbpsCE1	1	Peak attack volume of a single source transport port, seen at site CE1, in Mbps
TotalMbpsNoCE1	1	Volume of the attack in Mbps, seen at all sites but CE1, all source transport ports
TotalMbpsAttackNoCE1	1	Volume of the attack in Mbps, seen at all sites but CE1, all source transport ports
		while exceeding <i>t</i>
TotalPeakMbpsNoCE1	1	Peak volume of the attack in Mbps, seen at all sites but CE1, across all source transport
		ports
PeakMbpsNoCE1	1	Peak volume of the attack in Mbps, seen at all sites but CE1, across a single transport
		port
Cor[Site Port]{0.7,0.8,0.9}	6	Counter for correlation of the attack between sites and source transport ports,
		respectively, being greater than .7, .8, .9, respectively per minute.
TotalMbps[IXP*]	11	Volume of the attack in Mbps, as seen at the 11 sites, all source transport ports, respectively
TotalMbps[PORT*]	12	Volume of the attack in Mbps, summed across all sites, for each of the 12 source transport
		ports in our study
PeakMbps[IXP"]	11	Peak volume of the attack in Mbps, as seen at the 11 sites, respectively, single source
Decleville - [DODT*]	10	Transport port
PeakMbps[PORT]	12	reak volume of the attack in MDps, summed across all sites, for each of the 12 source
TotalMana	1	Sum of pools to build for the ottack across all sites all course transport protocols
Totanvipps	1	in Mone
TotalMppsAttack	1	Sum of packate transmitted for the attack across all all source transport parts, sites
TotalMppsAttack	1	while exceeding t in Mpps
TotalPeakMpps	1	Peak of packets transmitted for the attack summed across all sites all source transport
rotan cakivipps	1	norts in Mans
PeakMpps	1	Peak of nackets transmitted for the attack at any site single transport port in Mpps
TotalMpps[IXP*]	11	Sum of packets transmitted across all source transport ports at the 11 sites respectively.
TotalMpps[PORT*]	12	Sum of packets transmitted at all sites for each of the 12 source transport protocols
Totamippoli Otti J	14	in our study
TotalMbpsNorm	1	Volume of the attack, summed across all source transport ports and all sites, normalized
-ounit-partorni		by their size
L		

Features (cont.)

Feature Class	Feature Count	Description
TotalMbpsAttackNorm	1	Volume of the attack in Mbps, summed across all source
-		transport ports, all sites, normalized by their size, while exceeding t
TotalPeakMbpsNorm	1	Peak of the attack volume in Mbps, summed across all
		source transport ports, all sites, normalized by their size
PeakMbpsNorm	1	Peak of the attack volume in Mbps, single source transport port,
TetalMhuaNamu NaCE1	1	at a single site, normalized by their size
IotaiMbpsNormNoCE1	1	volume of the attack in Mbps, all source transport ports, seen
TotalMhnsAttackNormNoCE1	1	at all sites but CE1, not manzed by their size
TotalwibpsAttackNormiNoCE1	1	volume of the attack in MDps, an source transport ports, seen at all sites but $CF1$ normalized by their size, while exceeding t
TotalPeakMbpsNormNoCE1	1	Peak volume of the attack, summed all source transport ports.
	-	seen at all sites but CE1, normalized by their size
PeakMbpsNormNoCE1	1	Peak volume of the attack, single source transport ports, seen at
1		all sites but CE1, normalized by their size
TotalMbpsNorm[IXP*]	11	Volume of the attack in Mbps, all source transport ports, as seen
		at the 11 sites, normalized by their size, respectively
PeakMbpsNorm[IXP*]	11	Peak volume of the attack in Mbps, single source transport port, as seen
		at the 11 sites, normalized by their size, respectively
Allthresh-Before-[THRESHHOLD*]	7	Volume of traffic across all source ports that belong to an attack, greatest volume of a single site, before the respective
		threshold was exceeded
Allthresh-Detect-[THRESHHOLD*]	7	Volume of traffic across all source ports that belong to an attack, greatest volume of a single site, while the respective
Allehande Aßen [TUDECHLICI D*]		
Alithresh-After-[THRESHHOLD]	/	volume of transcacross all single source transport ports that belong to an attack, greatest volume of a single site, after the
Allthresh-Time_[THRESHHOLD*]	7	Amount of time him for which the attack volume across all course transport ports greatest of al single site, averaged the
Andresi-Time-[TTIRESTITIOLD]	,	Amount of time bins for which the attack volume across an source transport ports, greatest of an single site, exceeded the respective threshold
Allthreshnorm-Before-[THRESHHOLD*]	7	Volume of traffic across all source ports that belong to an attack, greatest of a single site normalized by its size
induced and before [inductive ab]	, ,	before the respective threshold was exceeded
Allthreshnorm-Detect-[THRESHHOLD*]	7	Volume of traffic across all source ports that belong to an attack, greatest of a single site, normalized by its size, while
		the respective threshold is exceeded
Allthreshnorm-After-[THRESHHOLD*]	7	Volume of traffic across all source transport ports that belong to an attack, greatest of a single site, normalized by its
		size, after the respective threshold is no longer exceeded
Allthreshnorm-Time-[THRESHHOLD*]	7	Amount of time bins for which the attack volume across all source transport ports, greatest of a single site, normalized by its
		size, exceeded the respective threshold
SiteThresh-[IXP"]-Before-[THRESHHOLD"]	77	Volume of the attack, for every site respectively, single source transport port, before exceeding the respective threshold
Site1nresn-[IXP"]-After-[IHRESHHOLD"]	77	volume of the attack, for every site respectively, single source transport port, after the respective threshold is
SiteThreeh [IVP*] Detect [TUPESHUOLD*]	77	no longer exceeded
SiteThresh-[IXP*]-Time-[THRESHHOLD*]	77	volume of the attack, for every site respectively, single source transport port, while exceeding the respective intersonal Amount of time bins for avery site respectively for every threshold single source transport port hefore evenestion
Siterinesii [181] finite [ffittelsfittoEb]		the respective threshold
GlobalThresh-[IXP*]-Before-[THRESHHOLD*]	77	Volume of the attack, adding all site's volume to every site respectively, all source transport ports, before exceeding
		the respective threshold
GlobalThresh-[IXP*]-After-[THRESHHOLD*]	77	Volume of the attack, adding all site's volume to every site respectively, all source transport ports, after the respective
		threshold is no longer exceeded
GlobalThresh-[IXP*]-Detect-[THRESHHOLD*]	77	Volume of the attack, adding all site's volume to every site respectively, all source transport ports, while exceeding
		the respective threshold
GlobalThresh-[IXP*]-Time-[THRESHHOLD*]	77	Amount of time bins, when adding all site's volume to the respective site, for every threshold, all source transport ports,
Cite Theorem 1 News [IVD1] D. C [THINDCHILLOI D1]		while exceeding the respective threshold
Site mesinvorm-[IAF]-Defore-[IFIKESHHOLD]	//	volume of the attack, for every site, normalized by its size, single source transport port, before exceeding the
SiteThreshNorm-[IXP*]-After-[THRESHHOLD*]	77	Volume of the attack for every site respectively, normalized by its size single source transport port after the
Sacracontoine [121] 2000-[110030110LD]		respective threshold is no longer exceeded
SiteThreshNorm-[IXP*]-Detect-[THRESHHOLD*]	77	Volume of the attack, for every site respectively, normalized by its size, single source transport port, while exceeding
		the respective threshold
SiteThreshNorm-[IXP*]-Time-[THRESHHOLD*]	77	Amount of time bins, for every site respectively, normalized by its size, for every threshold, single source transport
		port, before exceeding the respective threshold
Total	1106	

Boosting Factor evaluation (1)

(d) Low trust DXP mode: Boosting factor 6

(e) Low trust DXP mode: Boosting factor 8

(f) Low trust DXP mode: Boosting factor 10

Figure 21: Relative: Sensitivity of the detectable DDoS attacks in the low trust DXP setting for different boosting factors.

Boosting Factor evaluation (2)

Boosting Factor evaluation (3)

After detection: % attack traffic

After detection: % attack traffic

(d) Low trust DXP mode: Boosting factor 6

(f) Low trust DXP mode: Boosting factor 10

