MoonGen: A Scriptable High-Speed Packet Generator

Paul Emmerich, Sebastian Gallenmdiller, Daniel Raumer, Florian Wohlfart, and Georg Carle
Technische Universitat Minchen
Department of Computer Science
Chair for Network Architectures and Services

{emmericp|gallenmu|raumer|wohlfart|carle}@net.in.tum.de

ABSTRACT

We present MoonGen, a flexible high-speed packet genera-
tor. It can saturate 10 GbE links with minimum sized pack-
ets using only a single CPU core by running on top of the
packet processing framework DPDK. Linear multi-core scal-
ing allows for even higher rates: We have tested MoonGen
with up to 178.5 Mpps at 120 Gbit/s. We move the whole
packet generation logic into user-controlled Lua scripts to
achieve the highest possible flexibility. In addition, we uti-
lize hardware features of commodity NICs that have not
been used for packet generators previously. A key feature
is the measurement of latency with sub-microsecond preci-
sion and accuracy by using hardware timestamping capabil-
ities of modern commodity NICs. We address timing issues
with software-based packet generators and apply methods to
mitigate them with both hardware support and with a novel
method to control the inter-packet gap in software. Features
that were previously only possible with hardware-based so-
lutions are now provided by MoonGen on commodity hard-
ware. MoonGen is available as free software under the MIT
license at https://github.com/emmericp/MoonGen.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Measurement techniques

Keywords
Packet generation; User-space networking; Lua; DPDK

1. INTRODUCTION

Tools for traffic generation are essential to quantitative
evaluations of network performance. Hardware-based so-
lutions for packet generation are expensive and in many
cases inflexible. Existing software solutions often lack per-
formance or flexibility and come with precision problems |[2].

The state of the art in packet generation, which is dis-
cussed further in Section [2] motivated us to design Moon-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions @acm.org.

IMC’15, October 28-30, 2015, Tokyo, Japan.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-3848-6/15/10 ...$15.00.

DOI: http://dx.doi.org/10.1145/XXX. XXXXXXX .

Gen. Our novel software packet generator is flexible, fast,
and precise without relying on special-purpose hardware.

Moving the packet generation logic into user-controlled
Lua scripts ensures flexibility. We build on the JIT compiler
LualJIT [19] and the packet processing framework DPDK [14].
Our architecture and its implementation are described in
detail in Section Bl This combination allows us to send
14.88 Mpps, line rate at 10 GbE with minimum sized pack-
ets, from a single CPU core while executing script code
for each packet. Explicit support for multi-core architec-
tures allows us to load multiple 10 GbE interfaces simulta-
neously: We have tested MoonGen with 178.5 Mpps, line
rate at 120 Gbit/s using 12 2 GHz CPU cores.

MoonGen is controlled through its API instead of con-
figuration files. We explain the interface in Section [by
presenting code examples for typical use cases. The API al-
lows for applications beyond packet generation as it makes
DPDK packet processing facilities available to Lua scripts.

Section [5] evaluates the performance. We show that run-
ning scripts for each packet is feasible and can even be faster
than an implementation written in C.

Our packet generator can also receive packets and measure
round-trip latencies with sub-microsecond precision and ac-
curacy. This is achieved by using hardware features of Intel
commodity NICs that are intended for synchronization of
clocks across networks. Section [f] features a detailed evalu-
ation.

Section [7] investigates different methods for rate limiting
on NICs. It focuses on established methods for traffic rate
limiting by controlling the inter-departure times of pack-
ets based on either software mechanisms or explicit hard-
ware features on modern NICs. Aiming for a more generic
and more powerful approach to traffic limiting, Section
proposes a new mechanism introduced by MoonGen. This
solution allows generating complex traffic patterns without
additional hardware support.

MoonGen is available as free software under the MIT li-
cense [5]. Section @] describes how to use the published code
to reproduce all experiments in this paper.

2. STATE OF THE ART

Packet generators face a tradeoff between complexity and
performance. This is reflected in the available packet gener-
ators: Barebone high-speed packet generators with limited
capabilities on one hand and feature-rich packet generators
that do not scale to high data rates on the other hand. While
high-speed packet generators often only send out pre-crafted
Ethernet frames (e.g. pcap files), more advanced packet gen-

https://github.com/emmericp/MoonGen

erators are able to transmit complex load patterns by imple-
menting and responding to higher-layer protocols (e.g. web
server load tester). Consequently, there is a lack of fast and
flexible packet generators. Besides mere traffic generation,
many packet generators also offer the possibility to capture
incoming traffic and relate the generated to the received
traffic.

The traditional approach to measure the performance of
network devices uses hardware solutions to achieve high
packet rates and high accuracy [2]. Especially their abil-
ity to accurately control the sending rate and precise time-
stamping are important in these scenarios. Common hard-
ware packet generators manufactured by IXIA, Spirent, or
XENA are tailored to special use cases such as performing
RFC 2544 compliant device tests [3]. They send predefined
traces of higher-layer protocols, but avoid complex hardware
implementations of protocols. Therefore, these hardware ap-
pliances are on the fast-but-simple end of the spectrum of
packet generators. They are focused on well-defined and
reproducible performance tests for comparison of network-
ing devices via synthetic traffic. However, the high costs
severely limit their usage [2].

NetFPGA is an open source FPGA-based NIC that can
be used as a packet generator |16]. Although costs are still
beyond commodity hardware costs, it is used more often
in academic publications. For example, in 2009, Coving-
ton et al. [4] described an open-source traffic generator based
on NetFPGA with highly accurate inter-packet delays. The
OFLOPS framework by Rotos et al. [23| is able to measure
latencies with nanosecond accuracy via a NetFPGA.

Software packet generators running on commodity hard-
ware are widespread for different use cases. Especially traffic
generators that emulate realistic traffic, like Harpoon [25],
suffer from poor performance on modern 10 GbE links. We
focus on high-speed traffic generators that are able to satu-
rate 10 GbE links with minimum sized packets, i.e. achieve a
rate of14.88 Mpps. Bonelli et al. implement a software traf-
fic generator, which is able to send 12 Mpps by using mul-
tiple CPU cores [1]. Software packet generators often rely
on frameworks for efficient packet transmission |17} 22| |14]
to increase the performance further to the line rate limit.
Less complex packet generators can be found as example
applications for high-speed packet 10 frameworks: zsend for
PF_RING |17] and pktgen for netmap [22]. Wind River Sys-
tems provides Pktgen-DPDK [26] for DPDK [14]. Pktgen-
DPDK features a Lua scripting API that can be used to con-
trol the parameters of the generator, but the scripts cannot
modify the packets themselves. Further, existing tools for
packet generation like Ostinato have been ported to DPDK
to improve their performance |18|. Previous studies showed
that software solutions are not able to precisely control the
inter-packet delays |2} 4]. This leads to micro-bursts and
jitter, a fact that impacts the reproducibility and validity of
tests that rely on a precise definition of the generated traffic.

Ostinato is the most flexible software packet solution of
the investigated options as it features configuration through
Python scripts while using DPDK for high-speed packet 10.
However, its scripting API is limited to the configuration of
predefined settings, the scripts cannot be executed for each
packet. Precise timestamping and rate control is also not
supported. [18]

One has to make a choice between flexibility (software
packet generators) and precision (hardware packet genera-

tors) with the available options. Today different measure-
ment setups therefore require different packet generators.
For example, precise latency measurements currently require
hardware solutions. Complex packet generation (e.g. test-
ing advanced features of network middleboxes like firewalls)
requires flexible software solutions. We present a hybrid so-
lution with the goal to be usable in all scenarios.

3. IMPLEMENTATION

We identified the following requirements based on our goal
to close the gap between software and hardware solutions by
combining the advantages of both. MoonGen must...

(R1) ...be implemented in software and run on commodity
hardware.

(R2) ...be able to saturate multiple 10 GbE links with min-
imum sized packets.

(R3) ...be as flexible as possible.

(R4) ...support precise and accurate timestamping and rate
control.

The following building blocks were chosen based on these
requirements.

3.1 Packet Processing with DPDK

Network stacks of operating systems come with a high
overhead [22]. We found the performance too low to fulfill
requirement (R2). Packet IO frameworks like DPDK [14],
PF_RING ZC [17], and netmap [22] circumvent the network
stack and provide user space applications exclusive direct ac-
cess to the DMA buffers to speed up packet processing. All
of them have been used to implement packet generators that
fulfill requirement (R2) |17} 22| 26]. We have investigated
the performance of these frameworks in previous work [6]
and found that DPDK and PF__RING ZC are slightly faster
than netmap.

We chose DPDK for MoonGen as it supports a wide range
of NICs by multiple vendors (Intel, Emulex, Mellanox, and
Cisco), is well-documented, fast, and available under the
BSD license |14]. PF_RING ZC was not considered further
as some parts of this framework, which are needed for high-
speed operation, require purchasing a license. In netmap,
user space applications do not have access to the NIC’s reg-
isters. This is a safety precaution as a misconfigured NIC
can crash the whole system by corrupting memory [22]. This
restriction in netmap is critical as it is designed to be part of
an operating system: netmap is already in the FreeBSD ker-
nel [21). However, MoonGen needs to access NIC registers
directly to implement requirement (R4).

3.2 Scripting with LuaJIT

MoonGen must be as flexible as possible (R3). Therefore,
we move the whole packet generation logic into user-defined
scripts as this ensures the maximum possible flexibility. Lu-
aJIT was selected because related work shows that it is suit-
able for high-speed packet processing tasks |7] at high packet
rates (R2).

Its fast and simple foreign function interface allows for an
easy integration of C libraries like DPDK [19].

LuaJIT may introduce unpredictable pause times due to
garbage collection and compilation of code during run time.

This can lead to exhausted receive queues or starving trans-
mission queues.

Pause times introduced by the JIT compiler are in the
range of “a couple of microseconds” [20]. The garbage col-
lector (GC) works in incremental steps, the pause times de-
pend on the usage. All packet buffers are handled by DPDK
and are invisible to the GC. A typical transmit loop does not
allocate new objects in Lua, so the GC can even be disabled
for most experiments.

Pause times are handled by the NIC buffers: The cur-
rently supported NICs feature buffer sizes in the order of
hundreds of kilobytes |11, 12, |13]. For example, the smallest
buffer on the X540 chip is the 160 kB transmit buffer, which
can store 128 us of data at 10 GbE. This effectively conceals
short pause times. These sizes were sufficient for all of our
tests.

3.3 Hardware Architecture

Understanding how the underlying hardware works is im-
portant for the design of a high-speed packet generator. The
typical operating system socket API hides important aspects
of networking hardware that are crucial for the design of
low-level packet processing tools.

A central feature of modern commodity NICs is support
for multi-core CPUs. Each NIC supported by DPDK fea-
tures multiple receive and transmit queues per network in-
terface. This is not visible from the socket API of the op-
erating system as it is handled by the driver [10]. For ex-
ample, both the X540 and 82599 10 GbE NICs support 128
receive and transmit queues. Such a queue is essentially a
virtual interface and they can be used independently from
each other. |12} [13]

Multiple transmit queues allow for perfect multi-core scal-
ing of packet generation. Each configured queue can be as-
signed to a single CPU core in a multi-core packet genera-
tor. Receive queues are also statically assigned to threads
and the incoming traffic is distributed via configurable fil-
ters (e.g. Intel Flow Director) or hashing on protocol headers
(e.g. Receive Side Scaling). [12} [13]

Commodity NICs also often support timestamping and
rate control in hardware. This allows us to fulfill (R1) with-
out violating (R4).

MoonGen does not run on arbitrary commodity hard-
ware, we are restricted to hardware that is supported by
DPDK ([14] and that offers support for these features. We
currently support hardware features on Intel 82599, X540,
and 82580 chips.

Other NICs that are supported by DPDK but not yet ex-
plicitly by MoonGen can also be used, but without hardware
timestamping and rate control.

3.4 Software Architecture

MoonGen’s core is a Lua wrapper for DPDK that pro-
vides utility functions required by a packet generator. The
MoonGen API comes with functions that configure the un-
derlying hardware features like timestamping and rate con-
trol. About 80% of the current code base is written in Lua,
the remainder in C and C++.

Although our current focus is on packet generation, Moon-
Gen can also be used for arbitrary packet processing tasks,
e.g. packet forwarding or traffic analysis.

Figure [I] shows the architecture of MoonGen. It runs a
user-provided script, the userscript, on start-up. This script

-
i<
-
2 Userscript Userscript
e master spawn slave
=)
U
————— config API data API f=-
g MoonGen Core
)
=
g config API
=

Figure 1: MoonGen’s architecture

contains the main loop and the whole packet generation
logic.

The userscript will be executed in the master task initially
by calling the master function provided by the script. This
master function must initialize the used NICs, i.e. config-
ure the number of hardware queues, buffer sizes and filters
for received traffic. It can then spawn new instances of it-
self running in slave tasks and pass arguments to them. A
slave task runs a specified slave function. It usually receives
a hardware queue as an argument and then transmits or
receives packets via this queue. Starting a new slave task
spawns a completely new and independent LuaJIT VM that
is pinned to a CPU core. Tasks only share state through the
underlying MoonGen library which offers inter-task commu-
nication facilities.

All functions related to packet transmission and reception
in MoonGen and DPDK are lock-free to allow for multi-core
scaling.

MoonGen comes with example scripts for generating load
with IPv4, IPv6, [Psec, ICMP, UDP, and TCP packets, mea-
suring latencies, measuring inter-arrival times, and generat-
ing different inter-departure times like a poisson process and
bursty traffic.

4. SCRIPTING API

Our example scripts in the git repository are designed to
be self-explanatory exhaustive examples for the MoonGen
API [5]. The listings in this section show excerpts from the
quality-of-service-test.lua example script. This script
uses two transmission tasks to generate two types of UDP
flows and measures their throughput and latencies. It can
be used as a starting point for a test setup to benchmark
a forwarding device or middlebox that prioritizes real-time
traffic over background traffic.

The example code in this section is slightly different from
the example code in the repository: it has been edited for
brevity. Error handling code like validation of command-line

arguments is omitted here. The timestamping task has been
removed as this example focuses on the basic packet gener-
ation and configuration API. Most comments have been re-
moved and some variables renamed. The interested reader
is referred to our repository [5] for the full example code
including timestamping.

4.1 Initialization

function master(txPort, rxPort, fgRate, bgRate)
local tDev = device.config(txPort, 1, 2)
local rDev = device.config(rxPort)
device.waitForLinks()
tDev:getTxQueue (0) :setRate (bgRate)
tDev:getTxQueue (1) :setRate(fgRate)
mg.launchLua("loadSlave", tDev:getTxQueue(0), 42)
mg.launchLua("loadSlave", tDev:getTxQueue(1), 43)
mg.launchLua("counterSlave", rDev:getRxQueue(0))
mg.waitForSlaves ()

end

O © WO oA W N

e

Listing 1: Initialization and device configuration

Listing [[] shows the master function. This function is ex-
ecuted in the master task on startup and receives command
line arguments passed to MoonGen: The devices and trans-
mission rates to use in this case. It configures one transmit
device with two queues and one receiving device with the
default settings. The call in line 4 waits until the link on all
configured devices is established. It then configures hard-
ware rate control features on the transmission queues and
starts 3 slave threads, the first two generate traffic, the last
counts the received traffic on the given device. The argu-
ments passed to mg.launchLua are passed to the respective
functions in the new task. The loadSlave function takes the
transmission queue to operate on and a port to distinguish
background from prioritized traffic.

4.2 Packet Generation Loop

Listing [2] shows the loadSlave function that is started
twice and does the actual packet generation.

1 local PKT_SIZE = 124

2 function loadSlave(queue, port)

3 local mem = memory.createMemPool (function(buf)
4 buf : getUdpPacket () : £i11{

5 pktLength = PKT_SIZE,

6 ethSrc = queue, -- get MAC from device
7 ethDst = "10:11:12:13:14:15",

8 ipDst = "192.168.1.1",

9 udpSrc = 1234,

10 udpDst = port,

11 }

12 end)

13 local txCtr = stats:newManualTxCounter (port, "plain")
14 local baseIP = parseIPAddress("10.0.0.1")

15 local bufs = mem:bufArray()

16 while dpdk.running() do

17 bufs:fill(PKT_SIZE)

18 for _, buf in ipairs(bufs) do

19 local pkt = buf:getUdpPacket ()

20 pkt.ip.src:set(baseIP + math.random(255) - 1)
21 end
22 bufs:offloadUdpChecksums ()
23 local sent = queue:send(bufs)
24 txCtr:updateWithSize(sent, PKT_SIZE)
25 end
26 txCtr:finalize()
27 end

Listing 2: Transmission slave task

It first allocates a memory pool, a DPDK data structure in
which packet buffers are allocated. The MoonGen wrapper

for memory pools expects a callback function that is called to
initialize each packet. This allows a script to fill all packets
with default values (lines 5 to 10) before the packets are
used in the transmit loop (lines 17 to 24). The transmit
loop only needs to modify a single field in each transmitted
packet (line 20) to generate packets from randomized IP
addresses.

Line 13 initializes a packet counter that keeps track of
transmission statistics and prints them in regular intervals.
MoonGen offers several types of such counters with differ-
ent methods to acquire statistics, e.g. by reading the NICs
statistics registers. This example uses the simplest type, one
that must be manually updated.

Line 15 allocates a buf Array object, a thin wrapper around
a C array containing packet buffers. This is used instead of
a normal Lua array for performance reasons. It contains a
number of packets in order to process packets in batches in-
stead of passing them one-by-one to the DPDK API. Batch
processing is an important technique for high-speed packet
processing [6].

The main loop starts in line 17 with allocating packets of a
specified size from the memory pool and storing them in the
packet array. It loops over the newly allocated buffers (line
18) and randomizes the source IP (line 20). It then enables
checksum offloading (line 22) and transmits the packets (line
23).

Note that the main loop differs from a packet generator
relying on a classic API. MoonGen, or any other packet gen-
erator based on a similar framework, cannot simply re-use
buffers because the transmit function is asynchronous. Pass-
ing packets to the transmit function merely places pointers
to them into a memory queue, which is accessed by the NIC
later [14]. A buffer must not be modified after passing it
to DPDK. Otherwise the transmitted packet data may be
altered if the packet was not yet fetched by the NIC.

Therefore, we have to allocate new packet buffers from
the memory pool in each iteration. Pre-filling the buffers at
the beginning allows us to only touch fields that change per
packet in the transmit loop. Packet buffers are recycled by
DPDK in the transmit function, which collects packets that
were sent by the NIC earlier [14]. This does not erase the
packets’ contents.

4.3 Packet Counter

Listing [3] shows how to use MoonGen’s packet reception
API to measure the throughput of the different flows by
counting the incoming packets.

The task receives packets from the provided queue in the
bufArray bufs in line 5. It then extracts the UDP destina-
tion port from the packet (line 8) and uses counters to track
statistics per port. The final statistics are printed by calling
the counters’ finalize methods in line 19. Printed statistics
include the average packet and byte rates as well as their
standard deviations.

The format to print in is specified in the counter construc-
tor in line 11. All example scripts use the plain formatter,
the default value is CSV for easy post-processing. The output
can also be diverted to a file. Details are in the documenta-
tion of stats.lua.

This script can be used for another similar test setup by
adapting the code to the test setup by changing hardcoded
constants like the used addresses and ports. The full script

1 function counterSlave(queue)

2 local bufs = memory.bufArray()

3 local counters = {}

4 while dpdk.running() do

5 local rx = queue:recv(bufs)

6 for i = 1, rx do

7 local buf = bufs[i]

8 local port = buf:getUdpPacket () .udp:getDstPort ()
9 local ctr = counters[port]
10 if not ctr then

11 ctr = stats:newPktRxCounter(port, "plain")
12 counters[port] = ctr
13 end

14 ctr:countPacket (buf)

15 end

16 bufs:freeAll()

17 end

18 for _, ctr in pairs(counters) do
19 ctr:finalize()

20 end

21 end

Listing 3: Packet counter slave task

in the repository [5] includes a separate timestamping task
to acquire and print latency statistics for the two flows.

S. PERFORMANCE

Writing the whole generation logic in a scripting language
raises concerns about the performance. One important fea-
ture of LuaJIT is that it allows for easy integration with
existing C libraries and structs: it can directly operate on
C structs and arrays without incurring overhead for bound
checks or validating pointers [19]. Thus, crafting packets is
very efficient in MoonGen.

The obvious disadvantage is that unchecked memory ac-
cesses can lead to memory corruption, a problem that is usu-
ally absent from scripting languages. However, most critical
low-level parts like the implementation of the NIC driver
are handled by DPDK. The MoonGen core then wraps po-
tentially unsafe parts for the userscript if possible. Writing
beyond packet buffer boundaries is the only operation in a
typical userscript that can lead to memory corruption. This
is an intentional design decision to aid the performance.

5.1 Test Methodology

Measuring the CPU load caused by a DPDK-based appli-
cation is difficult because DPDK recommends a busy-wait
loop [14], i.e. the CPU load is always 100% for a typical
application. MoonGen and other DPDK-based generators
like Pktgen-DPDK [26] are no exceptions to this. The bot-
tleneck for packet transmission is usually not the CPU but
the line rate of the network, so just measuring the achieved
rate provides no insight. We therefore decrease the clock fre-
quency of our CPU such that the processing power becomes
the bottleneck. The performance can then be quantified as
CPU cycles per packet. The same approach was used by
Rizzo to evaluate the performance of netmap [22].

The tests in this section were executed on an Intel Xeon
E5-2620 v3 CPU with a frequency of 2.4 GHz that can be
clocked down to 1.2 GHz in 100 MHz steps. To ensure con-
sistent and reproducible measurement results, we disabled
Hyper-Threading, which may influence results if the load
of two virtual cores is scheduled to the same physical core.
TurboBoost and SpeedStep were also disabled because they
adjust the clock speed according to the current CPU load
and interfere with our manual adjustment of the frequency.

ot
T

[1) U OO NSO O - 20

a —
Z x| |z
9 20 8 %
< [i -,
‘f 15 10 2
] <
—é ~
a

st [B,

1 2 3 4 5 6 7 8
Number of 1.2 GHz CPU Cores

o

Figure 2: Multi-core scaling under high load

5.2 Comparison with Pktgen-DPDK

Our scripting approach can even increase the performance
compared to a static packet generator slightly. We show
this by comparing MoonGen to Pktgen-DPDK 2.5.1 [26], a
packet generator for DPDK written in C.

We configured both packet generators to craft minimum-
sized UDP packets with 256 varying source IP addresses on
a single CPU core. We then gradually increased the CPU’s
frequency until the software achieved line rate.

Pktgen-DPDK required 1.7 GHz to hit the 10 GbE line
rate of 14.88 Mpps, MoonGen only 1.5 GHz. Pktgen-DPDK
achieved 14.12Mpps at 1.5 GHz. This means MoonGen is
more efficient in this specific scenario.

This increased performance is an inherent advantage of
MoonGen’s architecture: Pktgen-DPDK needs a complex
main loop that covers all possible configurations even though
we are only interested in changing IP addresses in this test
scenario. MoonGen, on the other hand, can use a script that
consists of a tight inner loop that exclusively executes the
required tasks: allocating pre-filled packet buffers, modify-
ing the IP address, and sending the packets with checksum
offloading. You only pay for the features you actually use
with MoonGen.

5.3 Multi-core Scaling

The achieved performance depends on the script; the pre-
vious example was a light workload for the comparison to
Pktgen-DPDK, which is limited to such simple patterns.
Therefore, we test a more involved script to stress Moon-
Gen to show the scaling with multiple cores sending to the
same NIC via multiple transmission queues.

Figure [2] shows the performance under heavy load and
the scaling with the number of CPU cores. MoonGen was
configured to generate minimum-sized packets with random
payload as well as random source and destination addresses
and ports. The code generates 8 random numbers per packet
to achieve this. Each core generated and sent packets on two
different 10 GbE interfaces simultaneously. Linear scaling
can be observed up to the line rate limit (dashed line).

The code was written in idiomatic Lua without specific
optimizations for this use case: LuaJIT’s standard random
number generator, a Tausworthe generator [19], was used.
Since a high quality random number generator is not re-
quired here, a simple linear congruential generator would
be faster. The code also generates a random number per
header field instead of combining multiple fields (e.g. source
and destination port can be randomized by a single 32-bit
random number).

1120
150 |- 1100
180
60

|- am IR

1 2 3 4 5 6 7 8 9 10 11 12
Number of CPU Cores

ot
[en)

Rate [Gbit/s]

Packet Rate [Mpps]

o

Figure 3: Multi-core scaling with multiple NICs

Despite the lack of optimizations, the code was initially
found to be too fast for meaningful scalability measurements
(10.3Mpps on a single core). We therefore reduced the
CPU’s clock speed to 1.2 GHz and increased the number
of NICs to 2 for this test.

This test shows that sending to a single NIC port via mul-
tiple queues scales linearly, an important assumption made
for our architecture (cf. Section .

5.4 Scaling Beyond 10 Gigabit

40 GbE NICs like the Intel XL710 are currently being in-
troduced to the market. The 40 GbE ports on this NIC are
architecturally quad 10 GbE ports, they can even be used
as four independent 10 GbE ports [15]. We do not yet have
such NICs in our testbed, but we can mimic faster networks
by using multiple 10 GbE cards.

We equipped one of our test servers with six dual-port
10 GbE Intel X540-T2 NICs to investigate the performance
at high rates. Figure[3]shows the achieved packet rate when
generating UDP packets from varying IP addresses. We used
two Intel Xeon E5-2640 v2 CPUs with a nominal clock rate
of 2 GHz for this test, but the clock rate can even be reduced
to 1.5 GHz for this packet generation task (cf. Section [5.2)).

Note that sending to multiple NICs simultaneously is ar-
chitecturally the same as sending to multiple queues on a
single NIC as different queues on a single NIC are indepen-
dent from each other (cf. Section . We do not expect
significant challenges when moving to 40 or 100 GbE due to
this architecture and promising tests with multiple 10 GbE
ports.

5.5 Per-packet Costs

MoonGen’s dynamic approach to packet generation in
userscripts does not allow for a performance analysis in a
general configuration as there is no typical scenario. Never-
theless, the cost of sending a packet can be decomposed into
three main components: packet 10, memory accesses, and
packet modification logic. We devised a synthetic bench-

mark that measures the average number of clock cycles needed

for various operations that are commonly found in packet
generator scripts. These measurements can be used to esti-
mate the hardware requirements of arbitrary packet gener-
ator scripts.

We repeated all measurements ten times; the uncertainties
given in this section are the standard deviations.

5.5.1 Basic Operations

Table [1| shows the average per-packet costs of basic oper-
ations for IO and memory accesses. The baseline for packet
IO consists of allocating a batch of packets and sending

Operation Cycles/Pkt
Packet transmission 76.0 £ 0.8
Packet modification 9.1+1.2
Packet modification (two cachelines) 15.0+1.3
IP checksum offloading 15.2+1.2
UDP checksum offloading 33.1+£3.5
TCP checksum offloading 34.0+ 3.3

Table 1: Per-packet costs of basic operations

Fields Cycles/Pkt (Rand) Cycles/Pkt (Counter)

1 32.3+0.5 271+14
2 39.8+1.0 33.1+£1.3
4 66.0 £ 0.9 38.1£2.0
8 133.5£0.7 41.7+£1.2

Table 2: Per-packet costs of modifications

them without touching their contents in the main loop. This
shows that there is a considerable per-packet cost for the IO
operation caused by the underlying DPDK framework.

Modification operations write constants into the packets,
forcing the CPU to load them into the layer 1 cache. Addi-
tional accesses within the same cache line (64 bytes) add no
measurable additional cost. Accessing another cache line in
a larger packet is noticeable.

Offloading checksums is not free (but still cheaper than
calculating them in software) because the driver needs to set
several bitfields in the DMA descriptor. For UDP and TCP
offloading, MoonGen also needs to calculate the IP pseudo
header checksum as this is not supported by the X540 NIC
used here [13].

5.5.2 Randomizing Packets

Sending varying packets is important to generate different
flows. There are two ways to achieve this: one can either
generate a random number per packet or use a counter with
wrapping arithmetic that is incremented for each packet.
The resulting value is then written into a header field. Ta-
ble [2] shows the cost for the two approaches, the baseline
is the cost of writing a constant to a packet and sending it
(85.1 cycles/pkt).

There is a fixed cost for calculating the values while the
marginal cost is relatively low: 17cycles/pkt per random
field and 1cycle/pkt for wrapping counters. These results
show that wrapping counters instead of actual random num-
ber generation should be preferred if possible for the desired
traffic scenario.

5.5.3 Cost Estimation Example

We can use these values to predict the performance of the
scripts used for the performance evaluation in Section [5.3]
The example generated 8 random numbers for fields with a
userscript that is completely different from the benchmark-
ing script: it writes the values into the appropriate header
fields and the payloads, the benchmarking script just fills
the raw packet from the start. The script also combines
offloading and modification, the benchmark tests them in
separate test runs.

The expected cost consists of: packet 10, packet modifica-
tion, random number generation, and IP checksum offload-
ing, i.e. 229.243.9 cycles/pkt. This translates to a predicted

NIC

tom [n8] ts.sm [0S] tiom [0S] t2om [ns]

k [ns] Up

82599 (fiber) 320 352
X540 (copper) - -

2252.8

403.2 310.7£3.9 0.72c £ 0.056¢
2310.4 2195.2£9.6 0.59¢ £ 0.065¢

Table 3: Timestamping accuracy measurements

throughput of 10.47 £ 0.18 Mpps on a single 2.4 GHz CPU
core. The measured throughput of 10.3 Mpps is within that
range. This shows that our synthetic benchmark can be
used to estimate hardware requirements.

5.6 Effects of Packet Sizes

All tests performed in the previous sections use minimum-
sized packets. The reason for this choice is that the per-
packet costs dominate over costs incurred by large packets.
Allocating and sending a larger packets without modifica-
tions adds no additional cost in MoonGen. Only modify-
ing the content on a per-packet basis adds a performance
penalty, which is comparatively low compared to the fixed
cost of sending a packet. Using larger packets also means
that fewer packets have to be sent at line rate, so the overall
fixed costs for packet 10 is reduced: minimum-sized packets
are usually the worst-case.

Nevertheless, there are certain packet sizes that are of
interest: those that are just slightly larger than a single
cache line. We benchmarked all packet sizes between 64
and 128 bytes and found no difference in the CPU cycles
required for sending a packet. Since MoonGen also features
packet reception, we also tried to receive packets with these
sizes and found no measurable impact of the packet size.

Rizzo notes that such packet sizes have a measurable im-
pact on packet reception, but not transmission, in his evalu-
ation of netmap [22|. He attributes this to hardware bottle-
necks as it was independent from the CPU speed. We could
not reproduce this with MoonGen. The likely explanation is
that we are using current (2014) server hardware, while the
evaluation of netmap was done in 2012 on an older system
with a CPU launched in 2009 [22].

6. HARDWARE TIMESTAMPING

Another important performance characteristic beside the
throughput is the latency of a system. Modern NICs offer
hardware support for the IEEE 1588 Precision Time Proto-
col (PTP) for clock synchronization across networks. PTP
can be used either directly on top of Ethernet as a layer 3
protocol with EtherType 0x88F7 or as an application-layer
protocol on top of UDP [§].

We examined the PTP capabilities of the Intel 82580 GbE
and the 82599 and X540 10 GbE chips: They support time-
stamping of PTP Ethernet and UDP packets on a config-
urable port. They can be configured to timestamp only
certain types of PTP packets, identified by the first byte of
their payload. The second byte must be set to the PTP
version number. All other PTP fields in the packet are not
required to enable timestamps and may contain arbitrary
values. |11} |12, [13] This allows us to measure latencies of
almost any type of packet.

Most Intel NICs, including all 10 GbE chips, save the
timestamps for received and transmitted packets in a reg-
ister on the NIC. This register must be read back before a
new packet can be timestamped |12 13|, which limits the

throughput of timestamped packets. Some Intel GbE chips
like the 82580 support timestamping all received packets by
prepending the timestamp to the packet buffer [11].

6.1 Precision and Accuracy

Timestamping mechanisms of the Intel 82599 and Intel
X540 10 GbE chips operate at 156.25 MHz when running
at 10 GbE speeds [12, |13]. This frequency is reduced to
15.625 MHz when a 1 GbE link is used, resulting in a preci-
sion of 6.4 ns for 10 GbE and 64 ns for 1 GbE.

The datasheet of the Intel 82580 GbE [11] controller lacks
information about the clock frequency. Testing shows that
the acquired timestamps are always of the form t = n-64 ns+
k - 8ns where k is a constant that varies between resets, so
the precision is 64 ns.

All of these NICs timestamp packets late in the trans-
mit path and early in the receive path to be as accurate as
possible |11} |12} [13]. We tested the timestamping function-
ality by using loop-back multimode OM3 fiber cables on an
82599-based NIC with a 10GBASE-SR SFP+ module and
Cat 7 cable between the two ports of a dual-port X540-based
NIC. Table [3] shows measured latencies t, for different ca-
ble lengths « for each NIC as well as the (de-)modulation
time k£ and propagation speed vy, which can be calculated
from these data points with the equation t = k + l/v,. k
is higher on the copper-based NIC, this is likely due to the
more complex line code required for I0GBASE-T [9]. This
calculation does not take any errors in the cable length into
account; we rely on the vendor’s specification.

Each experiment was repeated 100000 times. All mea-
surements for each cable yielded the same result except for
the 8.5 m fiber cable. This cable caused a latency of 345.6 ns
in 50.2% of the measurements and 358.4ns in the other
49.8% (Table [3| shows the average). This variance is due
to the fact that the timer that is saved when the timestamp
is taken is incremented only every two clock cycles on the
82599 chip [12], i.e. the granularity of the timer is 12.8 ns but
the timestamping operates at 6.4 ns. The absence of a signif-
icant variance demonstrates a high precision, the plausible
results for the modulation time [27] and the linear behavior
of the propagation speed show a high accuracy.

6.2 Clock Synchronization

Test setups can involve multiple network ports that may
even be on different NICs. For example, measuring the for-
warding latency of a switch requires timestamping a packet
on two different ports. MoonGen therefore needs to be able
to synchronize the clocks between two network ports. This is
even necessary between two ports of a dual-port NIC, which
are completely independent from the user’s point of view.

MoonGen synchronizes the clocks of two ports by read-
ing the current time from both clocks and calculating the
difference. The clocks are then read again in the opposite
order. The resulting differences are the same if and only
if the clocks are currently synchronous (assuming that the
time required for the PCle access is constant). We observed

randomly distributed outliers in about 5% of the reads. We
therefore repeat the measurement 7 times to have a proba-
bility of > 99.999% of at least 3 correct measurements.

The median of the measured differences is then used to ad-
just one of the clocks to synchronize them. This adjustment
must be done an atomic read-modify-write operation. Such
an operation is also required by PTP, so the NICs support
this.

Tests show that this technique synchronizes the clocks
with an error of 1 cycle. Therefore, the maximum accu-
racy for tests involving multiple network interfaces is 19.2 ns
for the 10 GbE chips.

6.3 Clock Drift

Using two different clocks also entails the risk of clock
drifts. Drift on X540-based NICs depends on the physi-
cal wiring as the timestamping clock is synchronized to the
physical layer. Two ports on different X540-based NICs that
are directly connected do not exhibit any clock drift while
the link is established. However, the clocks of two ports on
the same X540 NIC will drift if they are connected to two
different NICs.

We measured the drift between different X540 and 82599
NICs. The worst-case observed drift was 35 us per second
between a NIC on the mainboard and a discrete NIC.

MoonGen handles clock drift by resynchronizing the clocks
before a timestamped packet is sent, so this drift translates
to a relative error of only 0.0035%. This is not significant for
latency measurements. Since the measurements show a con-
stant clock drift, it would also be possible to subtract the
accumulated drift from the acquired timestamps to avoid
resynchronization.

6.4 Limitations

Using PTP messages for latency measurements comes with
limitations. The latency measurements are restricted to
Ethernet frames with the PTP EtherType and UDP pack-
ets. MoonGen cannot measure latencies of other protocols.

The naive handling of clock drift by resynchronizing the
clocks for each packet allows for only one timestamped packet
in flight, limiting the throughput to 1 Pkt/RTT. MoonGen
scripts therefore usually use two transmission queues, one
that sends timestamped packets and one that sends regu-
lar packets. The regular packets can be crafted such that
the device under test cannot distinguish them from the time-
stamped packets, e.g. by setting the PTP type in the payload
to a value that is not timestamped by the NIC. So Moon-
Gen effectively samples the timestamps of random packets
in the data stream. Note that the benchmarking standard
RFC 2544 calls for only one timestamped packet in a 120
second interval [3]. MoonGen can timestamp several thou-
sands of packets per second to calculate average latencies
and histograms.

The investigated NICs refuse to timestamp UDP PTP
packets that are smaller than the expected packet size of
80 bytes. Larger frames are timestamped properly. This re-
striction does not apply to packets with the PTP EtherType
as the minimum PTP packet size is below 64 bytes in this
configuration.

Measurements of inter-arrival times are restricted to GbE
networks due to lack of hardware support for timestamping
in line rate on 10 GbE NICs.

Loadgen DuT

NIC NIC

2 2 2 22

Cgmumw-y

Figure 4: Software-based rate control

Based on the discussed measurement results and despite
these limitations, we argue that special-purpose hardware is
not necessary to conduct highly precise and accurate latency
and inter-arrival time measurements.

7. RATE CONTROL

An important feature of a packet generator is controlling
the packet rate and generating specific timing patterns to
simulate real-world scenarios.

MoonGen utilizes hardware rate control features of Intel
NICs to generate constant bit rate and bursty traffic. We
also implement a novel software-based rate control for real-
istic traffic patterns, e.g. based on a poisson process. That
is discussed further in Section [8} this section focuses on soft-
ware rate control in other packet generators and hardware
rate control.

7.1 Software Rate Control in Existing Packet
Generators

Trying to control the timing between packets in software
is known to be error-prone |2, |4].

The main problem with software-based rate control is that
the packet generator needs to push individual packets to the
NIC and then has to wait for the NIC to transmit it before
pushing the next packet.

However, modern NICs do not work that way: they rely
on an asynchronous push-pull model and not on a pure push
model. The software writes the packets into a queue that
resides in the main memory and informs the NIC that new
packets are available. It is up to the NIC to fetch the pack-
ets asynchronously via DMA and store them in the internal
transmit queue on the NIC before transmitting them. A
good explanation of this packet flow can be found in the
datasheet of the X540 chip |13 (Section 1.7), other NICs
follow a similar process.

Figure [visualizes this packet flow. Only a single packet
at a time is allowed in the queues (Qmemory & @nr1c) to
generate packets that are not back-to-back on the wire.

This hardware architecture causes two problems: the ex-
act timing when a packet is retrieved from memory cannot
be controlled by the software and queues cannot be used
(unless bursts are desired). The former results in a low pre-
cision, as the exact time when the packet is transferred can-
not be determined. The latter impacts the performance at
high packet rates as high-speed packet processing relies on
batch processing [6, |22].

-10°
Loadgen DuT : : :
. 1.5} —e— Load generated with MoonGen |

@ NIC NIC

—— Load generated with zsend

Interrupt Rate [Hz|

aE 2 b] f
o L B B A
memory

Offered Load [Mpps]

Figure 5: Hardware-based rate control
Figure 6: Interrupt rate with micro-bursts

7.2 Hardware Rate Control 7.4 Effects of Micro-Bursts on Linux Systems

Intel 10 GbE NICs feature hardware rate control: all trans-
mit queues can be configured to a specified rate. The NIC
then generates constant bit-rate (CBR) traffic. This solves
the two problems identified in the previous section. The
software can keep all available queues completely filled and
the generated timing is up to the NIC. Figure [5] shows this
architecture.

The disadvantage is that this approach is limited to CBR
traffic and bursty traffic (by changing the rate parameter
periodically).

Figure |§| visualizes the interrupt rate on a Linux packet
forwarder running Open vSwitch under increasing load gen-
erated by MoonGen and zsend. Open vSwitch was config-
ured with a static OpenFlow rule to forward between two
ports. The micro-bursts generate a low interrupt rate. The
likely explanation for this is that the bursts trigger the in-
terrupt rate moderation feature of the driver earlier than
expected. This shows that bad rate control can have a mea-
surable impact on the behavior of the tested system.

7.5 Limitations of Hardware Rate Control

In our tests we encountered unpredictable non-linear be-

7.3 Evaluation havior with packet rates above ~9Mpps (~6 Gbit/s wire-

We compare our hardware-assisted solution to the software- rate with 64 byte packets) on Intel X520 and X540 NICs.
based rate control algorithms found in zsend 6.0.2 (an ex- A work-around is configuring two transmission queues and
ample application of the PF_RING framework [17]), and sending a CBR stream from both of them. Note that this
Pktgen-DPDK 2.5.1 [26] to quantify the adverse effects of is not equivalent to a single transmission queue with proper
software-based rate control. rate control as both queues control their transmission rate

We use an Intel 82580 GbE controller, which is able to independently from each other.
timestamp arbitrary received packets in line rate (cf. Sec- Hardware rate control of the investigated NICs is also
tion [6) to measure inter-arrival times. restricted to CBR traffic, so MoonGen still needs an im-

Figuremcompares the inter-arrival times of packets gener- plementation of software-based rate control for other traffic
ated by MoonGen. The generators use an X540 NIC, which patterns.

also supports 1 Gbit/s. The histograms have a bin size of

64ns (precision of the 82580 chip) and were generated by 8. CONTROLLING INTER-PACKET GAPS
observing 1000000 packets.

Traffic from the hardware rate-controlled NIC oscillates IN SOFTWARE
around the targeted inter-arrival time by up to 256 ns and it To overcome the restriction to constant bit rate or bursty
avoids generating bursts (inter-arrival time of 672 ns, marked traffic, MoonGen implements a novel mechanism for software-
with a black arrow in Figure 7)) almost completely. Table based rate control. This allows MoonGen to create arbitrary
summarizes the results. The best result in each column is traffic patterns.
highlighted. . .
We discussed these findings with the authors of zsend as 8.1 Sendlng Gaps on the Wire
we configured it explicitly to avoid bursts. We then tested We were not satisfied with the precision of existing soft-
several suggested configurations and versions. We concluded ware rate control mechanisms (cf. Section and |2} [4]) so
that these observations indicate a bug in the PF_RING ZC we present a new method here. All existing packet genera-
framework that is being investigated. tors try to delay sending packets by not sending packets for
It stands to reason that the precision problems as well as a specified time, leading to the previously mentioned prob-
the micro-bursts intensify further at rates beyond 1 Gbit/s lems. MoonGen fills the gaps between packets with invalid
with software-based rate control. Measuring inter-arrival packets instead. Varying the length of the invalid packet
times on 10 GbE is a challenging task: Reliable measure- precisely determines the time between any two packets and
ments require special-purpose hardware. We do not yet have subsequently allows the creation of arbitrary complex traffic
such hardware. patterns. With this technique, we can still make use of the
We predict that the precision of our hardware-assisted ap- NIC’s queues and do not have to rely on any timing related
proach will improve at 10 GbE speeds: The frequency of the to DMA accesses by the NIC.
internal clock on the NIC that controls the inter-departure This approach requires some support by the device under
times is scaled up by a factor of 10 when operating at 10 GbE test: it needs to detect and ignore invalid packets in hard-

compared to GbE [13]. ware without affecting the packet processing logic. Moon-

Rate Packet Generator Micro-Bursts +64ns +128ns +256ns =+512ns
MoonGen 0.02% 49.9% 74.9% 99.8% 99.8%
500 kpps Pktgen-DPDK 0.01% 37.7% 72.3% 92% 94.5%
zsend 28.6% 3.9% 5.4% 6.4% 13.8%
MoonGen 1.2% 50.5% 52% 97% 100%
1000 kpps Pktgen-DPDK 14.2% 36.7% 58% 70.6% 95.9%
zsend 52% 4.6% 7.9% 24.2% 88.1%
Table 4: Rate control measurements
30 |- I]_I 8 15
X 9 S
= 30| ’ Pktgen-DPDK ‘ = 30| ’ Pktgen-DPDK ‘
= = '
2 151 8 < 151 8
) o
2 0 2 0
1&H 3 PR | H |
0 T —— T " T 0 T f
0.5 1 1.5 2 2.5 3 3.5 4 0.5 1 1.5 2

Inter-Arrival Time [us]

(a) 500 kpps

Inter-Arrival Time [us]
(b) 1000 kpps

Figure 7: Histograms of inter-arrival times

Loadgen HW rate control DuT
@ disabled
' NIC / NIC
S[E3[E3N = 2l
Qmemory Wire

Figure 8: Generation of arbitrary traffic patterns in
MoonGen

Gen uses packets with an incorrect CRC checksum and, if
necessary, an illegal length for short gaps. All investigated
NICs in our testbed drop such packets early in the receive
flow: they are dropped even before they are assigned to a
receive queue, the NIC only increments an error counter
. Subsequently, the packet processing software is not
affected in any way by this software rate control mechanism.

Figure @ illustrates this concept. Shaded packets pé have
an incorrect CRC checksum, all other packets py a correct
one. Note that the wire and all transmission queues are
completely filled, i.e. the generated rate has to be the line
rate.

In theory, arbitrary inter-packet gaps should be possible.
Unfortunately, the tested NICs pad packets to a minimum
wire-length (including Ethernet preamble, start-of-frame de-
limiter, and inter-frame gap) of less than 76 bytes (8 bytes
smaller than a minimal-sized Ethernet packet) even when

8 L L L
— ’ 1st quartile I 8 Median [1 3rd quartile ‘
S .]
o
9
g 4 ' |
2
TR (Y1 TS
é 0 % *ﬂI hl % il lﬂﬂlm ﬁ
2 L 419 1

72 T T T T

0 0.5 1 1.5
Offered Load [Mpps]

Figure 9: Differences in forwarding latencies of

Open vSwitch with CBR traffic generated by hard-
ware and our software approach

padding is explicitly disabled. This means that gaps with a
length of 1 to 75 bytes (0.8 ns to 60ns on 10 GbE) cannot
be generated.

8.2 Evaluation

We generate CBR traffic with our approach and compare
it to CBR traffic generated by the hardware facilities of
our NIC by comparing the response of a device under test
(DuT).

We use Intel’s hardware implementation as reference gen-
erator. The same measurement with other software-based
packet generators is not possible as they don’t support ac-
curate timestamping. However, the results from Section

180 \ -
160 | | —=— CBR (Median) ‘|
140 | |- - - CBR (25th/75th Percentile) .
g 120 |+ Poisson (Median) 7
. 100 | Poisson (25th/75th Percentile) i1
5 sof 7 1
g 60| |
40)
20 | 1
00 015 i 115 2

Offered Load [Mpps]

Figure 10: Forwarding latency of Open vSwitch with
CBR and poisson traffic patterns

indicate that the latency would be affected at low rates due
to the measurably different interrupt rate (cf. Figure @

Figure [9] shows the difference of the 25th, 50th, and 75th
percentiles of the forwarding latency of a server running
Open vSwitch. The test is restricted to the range 0.1 Mpps
to 1.9 Mpps as the DuT becomes overloaded at higher rates
and the latency is a function of the buffer size of the DuT
after this point. We repeated the whole test 10 times, the
error bars in the figure show the resulting standard devia-
tions.

The relative deviation is within 1.20 of 0% for almost
all measurement points, only the 1st quartile at 0.23 Mpps
deviates by 1.5%+0.5%. Minor activity on the DuT, e.g. an
active SSH session, shows a significantly larger effect (>
10%) on the latency with both rate control methods. This
shows that loading the DuT with a large number of invalid
packets does not cause system activity; the DuT does not
notice the invalid packets.

8.3 Example: Poisson Traffic

CBR traffic is often an unrealistic test scenario for mea-
surements of latency. Bursts or a poisson process allows for
more sophisticated tests that also stress buffers as the DuT
becomes temporarily overloaded.

Figure [I0] shows measured latencies of Open vSwitch con-
figured to forward packets between two ports. We gener-
ate packets with CBR (hardware rate control) and poisson
(CRC-based software rate control) traffic patterns and com-
pare their latencies.

The outlier at 0.4 Mpps for CBR traffic was reproducible
across multiple re-measurements on different servers. The
sudden drop in latency before the system becomes over-
loaded was also reproducible. Both are likely artifacts of the
interaction between the interrupt throttle algorithm found
in the Intel driver |10] and the dynamic interrupt adaption
of Linux [24] on the DuT. The artifacts are present regard-
less of how the CBR traffic is generated (cf. Figure E[), SO
this is not caused by MoonGen but an effect of the traffic
pattern on DuT.

The system becomes overloaded at about 1.9 Mpps, result-
ing in packet drops and a very large latency (about 2ms in
this test setup) as all buffers are filled. The overall achieved
throughput is the same regardless of the traffic pattern and
method to generate it. This result shows that the traffic
pattern can affect the DuT in an experiment measurably,

underlining the importance of a reliable precise packet gen-
erator.

8.4 Limitations of our Approach

Shorter per-byte transmission times improve both the gran-
ularity and the minimum length that can be generated. This
means our solution works best on 10 GbE where the granu-
larity is 0.8 ns.

Due to the minimum size of 76 bytes, gaps between 1
and 75 bytes (0.8 to 60 ns) cannot be precisely represented.
We approximate these by occasionally skipping an invalid
packet and increasing the length of other gaps. The overall
rate still reaches the expected average with this technique,
i.e. the accuracy is high but the precision is relatively lovﬂ
for these delays.

A possible work-around for gaps with a length between
1 and 75 bytes is using multiple NICs to generate traffic
that is sent to a switch. The switch then drops the invalid
frames and multiplexes the different streams before forward-
ing them to the DuT. This only works if the generated pat-
tern can be split into multiple streams, e.g. by overlaying
several poisson processes.

However, short delays are often not meaningful in mod-
ern networks. For example, the 10GBASE-T transmission
standard used by most experiments for this paper operates
on frames with a payload size of 3200 bits on the physical
layer as defined in IEEE 802.3 Section 4 55.1.3.1 [9]. This
means that any layers above the physical layer will receive
multiple packets encoded in the same frame as a burst. So
two back-to-back packets cannot be distinguished from two
packets with a gap of 232 bytes (185.6ns) in the worst case
and failure to represent gaps between 1 and 75 bytes should
not be noticeable. Note that this limit on the physical layer
only applies to relatively short inter-arrival times, bad rate
control generating bursts is still inferior to our approach
(cf. Figure [6] in Section [7.3).

Another limitation is that our approach is optimized for
experiments in which the device under test (or the first hop
in a system under test) is a software-based packet processing
system and not a hardware appliance. Hardware might be
affected by an invalid packet. In such a scenario, we suggest
to route the test traffic through a store-and-forward switch
that drops packets with invalid CRC checksums. This ef-
fectively replaces the invalid packets with real gaps on the
wire. Note that the effects of the switch on the inter-arrival
times need to be carefully evaluated first.

9. REPRODUCIBLE RESEARCH

We encourage you to install MoonGen and reproduce the
results from this paper to verify our work. All experiments
presented here can be reproduced with the included example
scripts and NICs based on Intel 82599, X540, and 82580
chips.

The performance evaluation in Section [5|is based on the
scripts in found in examples/benchmarks, an Intel Xeon E5-
2620 v3 CPU, and Intel X540 NICs.

The timestamping accuracy in Section [6] was measured
with the script timestamps.lua, the clock drift measure-
ments with drift.lua.

'Note that +30ns is still better than hardware rate control
and other software solutions, cf. Section

All inter-arrival times in Section [7] were measured with
inter-arrival-times.lua. The script 12-load-latency
.lua with the timestamping task disabled was used to gen-
erate the analyzed traffic. The suggested work-around for
the hardware rate control limitations at high rates is also im-
plemented in 12-load-latency.lua. Sending bursty traffic
is implemented in 12-bursts.lua.

The example measurement of the interrupt rate in Sec-
tion[7-4 was conducted with 12-1load-latency.lua and zsend
6.0.2.

compare-rate-control-mechanisms.lua was used for the
evaluation in Section [82] The latency measurements with
poisson and CBR traffic in Section[8.3]are based on 12-1oad-
latency.lua and 12-poisson-load-latency.lua.

The DuT for these tests was Open vSwitch 2.0.0 on De-
bian Linux 3.7 with ixgbe 3.14.5 running on a server with
a 3.3 GHz Intel Xeon E3-1230 v2 CPU. Only a single CPU
core was used by configuring the NIC with only one queue.
Each test was run for at least 30 seconds with at least 30 000
timestamped packets.

All measurements were conducted on Intel X540 NICs ex-
cept for the inter-arrival times (Intel 82580) and fiber loop-
back measurements (Intel 82599). We confirmed that all de-
scribed experiments are reproducible with commit 492c0e4
in our git repository [5].

10. CONCLUSIONS AND FUTURE WORK

We have presented a general-purpose packet generator
that uses hardware features of commodity NICs to imple-
ment functionality that was previously only available on
expensive special-purpose hardware. MoonGen represents
a hybrid between a pure software-based solution and one
based on hardware. It combines the advantages of both
approaches while mitigating shortcomings by using both
hardware-specific features and novel methods for rate con-
trol.

MoonGen measures latencies with sub-microsecond accu-
racy and precision. The desired packet rate can be controlled
precisely through both hardware-support and our rate con-
trol algorithm based on filling gaps with invalid packets.

We have shown that it is feasible to use modern imple-
mentations of scripting languages to craft packets without
sacrificing speed. This makes MoonGen flexible and extensi-
ble. The flexibility goes beyond the capabilities provided by
hardware load generators as each packet can be crafted in
real-time by a script. Tests that respond to incoming traffic
in real-time are possible as MoonGen also features packet
reception and analysis.

In the future, we will add additional example scripts and
support for hardware features of more NICs. MoonGen cur-
rently comes with example scripts to handle IPv4, IPv6,
UDP, TCP, ICMP, IPsec, and ARP traffic.

MoonGen’s flexible architecture allows for further appli-
cations like analyzing traffic in line rate on 10 GbE networks
or doing Internet-wide scans from 10 GbE uplinks. You can
find the latest version of MoonGen in our public git reposi-
tory [5].

Acknowledgments

This research was supported by the DFG MEMPHIS project
(CA 595/5-2), the KIC EIT ICT Labs on SDN, and the
EUREKA-Project SASER (01BP12300A).

We would like to thank the anonymous reviewers and our
colleagues Dominik Scholz, Johannes Reifferscheid, Rainer
Schonberger, Patrick Werneck, Lukas Méardian, Lukas Er-
lacher, and Stephan M. Giinther for valuable contributions
to MoonGen and this paper.

11. REFERENCES

[1] Nicola Bonelli, Andrea Di Pietro, Stefano Giordano,
and Gregorio Procissi. Flexible high performance
traffic generation on commodity multi—core platforms.
In Proceedings of the 4th International Conference on
Traffic Monitoring and Analysis, pages 157-170.
Springer, 2012.

[2] Alessio Botta, Alberto Dainotti, and Antonio Pescapé.
Do you trust your software-based traffic generator?
IEEE Communications Magazine, 48(9):158-165,
2010.

[3] S. Bradner and J. McQuaid. Benchmarking
Methodology for Network Interconnect Devices. RFC
2544 (Informational), March 1999.

[4] G Adam Covington, Glen Gibb, John W Lockwood,
and Nick Mckeown. A packet generator on the netfpga
platform. In 17th IEEE Symposium on Field
Programmable Custom Computing Machines, pages
235-238, 2009.

[5] Paul Emmerich. MoonGen.
https://github.com/emmericp/MoonGen,

[6] Sebastian Gallenmiiller, Paul Emmerich, Florian
Wohlfart, Daniel Raumer, and Georg Carle.
Comparison of Frameworks for High-Performance
Packet 10. In ACM/IEEE Symposium on
Architectures for Networking and Communications
Systems (ANCS 2015), May 2015.

[7] Luke Gorrie. Snabb Switch.
https://github.com/SnabbCo/snabbswitch/.

[8] IEEE Standard for a Precision Clock Synchronization
Protocol for Networked Measurement and Control
Systems. IEEE 1588-2008, July 2008.

[9] IEEE. IEEE 802.3-2012 IEEE Standard for Ethernet
Section Four, 2012.

[10] Intel. Intel Server Adapters - Linux ixgbe Base Driver.
http://www.intel.com/support/network/adapter/
pro100/sb/CS-032530.htm. Last visited 2015-04-28.

[11] Intel 82580EB Gigabit Ethernet Controller Datasheet
Rev. 2.6. Intel, 2014.

[12] Intel 82599 10 GbE Controller Datasheet Rev. 2.76.
Intel, 2012.

[13] Intel Ethernet Controller X540 Datasheet Rev. 2.7.
Intel, 2014.

[14] Data Plane Development Kit. http://dpdk.org/.
Last visited 2015-04-28.

[15] Intel Ethernet Controller XL710 Datasheet Rev. 2.1.
Intel, December 2014.

[16] NetFPGA. http://netfpga.org/. Last visited
2015-04-28.

[17] Ntop. PF_RING ZC (Zero Copy).
http://www.ntop.org/products/pf_ring/pf_ring-
zc-zero-copy/. Last visited 2015-04-28.

[18] Srivats P. ostinato.
http://code.google.com/p/ostinato/. Last visited
2015-04-28.

https://github.com/emmericp/MoonGen
https://github.com/SnabbCo/snabbswitch/
http://www.intel.com/support/network/adapter/pro100/sb/CS-032530.htm
http://www.intel.com/support/network/adapter/pro100/sb/CS-032530.htm
http://dpdk.org/
http://netfpga.org/
http://www.ntop.org/products/pf_ring/pf_ring-zc-zero-copy/
http://www.ntop.org/products/pf_ring/pf_ring-zc-zero-copy/
http://code.google.com/p/ostinato/

[19]

[20]

[21]

[22]

[23]

Mike Pall. LuaJIT. http://luajit.org/. Last visited
2015-04-28.

Mike Pall. LuaJIT in realtime applications.
http://www.freelists.org/post/luajit/LuaJIT-
in-realtime-applications, 3, July 2012. Mailing list
post.

Luigi Rizzo. The netmap project.
http://info.iet.unipi.it/~luigi/netmap/. Last
visited 2015-04-28.

Luigi Rizzo. netmap: a novel framework for fast
packet 1/0. In USENIX Annual Technical Conference,
pages 101-112, 2012.

Charalampos Rotsos, Nadi Sarrar, Steve Uhlig, Rob
Sherwood, and Andrew W Moore. Oflops: An Open
Framework for OpenFlow Switch Evaluation. In
Passive and Active Measurement, pages 85-95.
Springer, 2012.

Jamal Hadi Salim, Robert Olsson, and Alexey
Kuznetsov. Beyond Softnet. In Proceedings of the 5th
Annual Linuz Showcase € Conference, volume 5,
pages 18-18, 2001.

Joel Sommers and Paul Barford. Self-configuring
network traffic generation. In Proceedings of the 4th
ACM SIGCOMM Conference on Internet
Measurement, IMC ’04, pages 68-81, New York, NY,
USA, 2004. ACM.

Keith Wiles. Pktgen-DPDK.
http://github.com/Pktgen/Pktgen-DPDK/.

Yinglin Yang, Sudeep Goswami, and Carl G. Hansen.
10GBASE-T ecosystem is ready for broad adoption,
2012. White paper.

http://luajit.org/
http://www.freelists.org/post/luajit/LuaJIT-in-realtime-applications,3
http://www.freelists.org/post/luajit/LuaJIT-in-realtime-applications,3
http://info.iet.unipi.it/~luigi/netmap/
http://github.com/Pktgen/Pktgen-DPDK/

	Introduction
	State of the Art
	Implementation
	Packet Processing with DPDK
	Scripting with LuaJIT
	Hardware Architecture
	Software Architecture

	Scripting API
	Initialization
	Packet Generation Loop
	Packet Counter

	Performance
	Test Methodology
	Comparison with Pktgen-DPDK
	Multi-core Scaling
	Scaling Beyond 10 Gigabit
	Per-packet Costs
	Basic Operations
	Randomizing Packets
	Cost Estimation Example

	Effects of Packet Sizes

	Hardware Timestamping
	Precision and Accuracy
	Clock Synchronization
	Clock Drift
	Limitations

	Rate Control
	Software Rate Control in Existing Packet Generators
	Hardware Rate Control
	Evaluation
	Effects of Micro-Bursts on Linux Systems
	Limitations of Hardware Rate Control

	Controlling Inter-Packet Gaps in Software
	Sending Gaps on the Wire
	Evaluation
	Example: Poisson Traffic
	Limitations of our Approach

	Reproducible Research
	Conclusions and Future Work
	References

