
Characterizing Performance and Fairness of Big
Data Transfer Protocols on Long-haul Networks

Se-young Yu, Nevil Brownlee, and Aniket Mahanti
Department of Computer Science

University of Auckland
Auckland, New Zealand

{se-young.yu, n.brownlee, a.mahanti}@auckland.ac.nz

Abstract—This paper presents a characterization study of big
data transfer protocols on a long-haul network. We analyzed
the performance and fairness of three well-known open-source
protocols, namely, GridFTP, FDT, and UDT. Using a real-world 10
Gb/s network link between New Zealand and Sweden, we studied
data transfer rates (in terms of goodput) and fairness (in terms
of impact on round trip time) of the protocols. We performed
extensive experiments using single and multiple data flows to
comprehend how these protocols behave in real-world situations.
We found that GridFTP has the fastest data transfer rates when
using a single flow. UDT suffered from poor performance due
to implementation issues. A small buffer size limited FDT’s
performance, however, this drawback can be overcome by using
multiple flows in lieu of fairness.

I. INTRODUCTION

Large scientific installations such as the Large Hadron
Collider and the Square Kilometer Array produce very large
amounts of raw data every day. These data (often referred to as
big data) are processed locally and distributed to researchers
all over the world for storage and analysis.

There are two categories of big data transfer protocols: (a)
TCP-based protocols [1], [2] that depend on the existing TCP
congestion avoidance algorithms, and (b) UDP-based protocols
[3], [4] that utilize their own congestion control algorithm.
While implementing a protocol’s own congestion control may
be more efficient (e.g., to increase throughput in long-haul
networks), however, such an algorithm needs to also consider
bandwidth fairness.

We surveyed commonly used big data transfer protocols used
in eScience research projects and chose the following protocols:
HPN-SSH, GridFTP, FDT, UDT, and Tsunami. We chose these
protocols because they are open-source, have wide range of
users in the eScience research community, and can be readily
run on Linux workstations. We ran a comprehensive suite of
experiments using our chosen set of big data transfer protocols
in our 10 Gb/s local [5] and national [6] testbeds. During
these experiments, we found HPN-SSH and Tsunami did not
function sufficiently well. Thus, we focus on the following three
protocols for rest of the paper: GridFTP, FDT, and UDT.

GridFTP [1] is an free software implementation, which
provides extensions to FTP. It provides enhancements such as
parallel data transfer, data striping, and TCP socket buffer opti-
mization. FDT [2] is another free software implementation that
uses TCP as the transport protocol. In addition to parallel data

transfer and socket buffer optimization, it also provides multiple
I/O threads and platform independent implementation. UDT
[3] is an UDP-based connection-oriented data transfer protocol
with its own congestion control algorithm, called Decreasing
Increases AIMD (DAIMD). UDT [3] aims to provide TCP-
friendly congestion control on top of UDP, using DAIMD and
rate control to achieve high throughput over long-haul networks.

In this paper, we present a characterization study of big
data transfer protocols on a long-haul international network.
We established a 10 Gb/s network link between New Zealand
and Sweden. We used this testbed to perform experiments on
the performance and fairness of GridFTP, FDT, and UDT. Our
results show that GridFTP is well-suited in long-haul networks
to provide fast transfers. This is due to its implementation that
makes it stable as well as its ability to set a large TCP socket
buffer size. To the best of our knowledge, this is the first work to
study big data transfer protocols on a high-speed international
network. Our results can be used by scientists to choose an
appropriate big data transfer protocol that suits their research
goals.

The rest of the paper is organized as follows. Section II
discusses related work. Section III discusses our experimental
setup and data collection methodology. Performance and fair-
ness analysis of the big data transfer protocols are discussed in
Section IV and Section V. Section VI concludes the paper.

II. RELATED WORK

There has been limited work on characterizing performance
and fairness of open-source big data transfer application-layer
protocols in long-haul networks.

Ha et al. [7] compared fairness and link utilization of several
high-speed TCP variants such as BIC, CUBIC, FAST, HSTCP,
H-TCP, and STCP using the dummynet1 network emulation
tool with varying levels of background traffic in a local testbed
network. They found that all the variants showed less fairness
to TCP as the delay increased.

Cottrell et al. [8] compared throughput, stability, fairness, and
CPU utilization of several protocols such as HSTCP, Scalable
TCP, and Fast-TCP using a 1 Gb/s academic and research
network at the Stanford Linear Accelerator Centre. They found
that scalable TCP, BIC, and H-TCP were most efficient while

1http://info.iet.unipi.it/ luigi/dummynet/

Fig. 1. Path between the experiment machines. Each flag shows different
hops of the network path. 1 is Queenstown, NZ, 2 is LA, USA, 3 is Houston,
USA, 4 is New York, USA, 5 is Amsterdam, Netherlands and 6 is Stockholm,
Sweden.

TCP Reno, HSTCP-LP, and HSTCP did not utilize network
capacity effectively. They used both TCP and UDP-based
protocols, however, their network capacity was limited to 1
Gb/s.

Suresh et al. [9] evaluated throughput, fairness, and CPU
usage of GridFTP, GridCopy and UDT. They found that UDT
performed well compared to the rest of the tested proto-
cols. GridFTP also performed better, except when transferring
smaller files. While this study compared the performance of
GridFTP with UDT, their testbed was restricted to using a 2
Gb/s campus network.

Tierney et al. [10] compared performance of RDMA over
converged Ethernet, TCP, and UDP in ESnet’s 10 and 40
Gb/s link with 47 ms round trip time (RTT). Since, this
work focused on comparing transport-layer protocols using a
dedicated interface for RDMA, we cannot compare the results
directly with our work. We use TCP or UDP over Ethernet
and instead characterize performance and fairness of different
application-layer protocols. Furthermore, our experiments are
performed in very high RTT network, which is typical for
transfers between New Zealand and Europe.

Yu et al. [5], [11] compared big data transfer protocols in
a 10 Gb/s local testbed network, and in [6] compared the
big data transfer protocols in a national 10 Gb/s network. Our
work extends these works by characterizing performance of the
protocols in a 10 Gb/s long-haul international network.

Previous studies have used different metrics for measuring
fairness. In this work, we measure RTT changes in the link
during the data transfer as a measure of fairness. RTT changes
may provide pointers on potential impact on the network.

III. EXPERIMENTAL SETUP

Research and Education Advanced Network New Zealand
(REANNZ)2 hosted the the 14th Annual Global LambdaGrid

2http://www.reannz.co.nz/

TABLE I
SUMMARY OF BIG DATA TRANSFER PROTOCOLS

Protocol Version Transport Congestion Multiple
used protocol control data flows

GridFTP 6.0 TCP TCP CUBIC Supported
FDT 0.19.2 TCP TCP CUBIC Supported
UDT 4.7 UDP DAIMD Not Supported

Workshop3 in Queenstown, New Zealand. The conference orga-
nizers established a 100 Gb/s connection between Queenstown
and Los Angeles, USA. We were able to use this network to
conduct big data transfer experiments using a 10 Gb/s path
between Queenstown and Stockholm, Sweden, as shown in
Figure 1.
Traceroute revealed that there were 13 hops in the

network path, and the average RTT for the path was 323
ms during the experiment, without any experimental traffic
injected. The Queenstown-side of network was operated by
REANNZ (From 1 to 2 in Figure 1). NORDUnet4 operates
the Stockholm site (From 5 to 6 in Figure 1), and there are
Internet25 (From 2 to 4 in Figure 1) and GEANT-operated6

links (From 4 to 5 in Figure 1) in between them. To avoid
other network traffic affecting our experiments, we conducted
our data transfers between 12 a.m. and 4 a.m. We also noticed
the link capacity was lightly utilized by other users. We did not
notice any major path changes during the experiments.

We set up two machines – sender and receiver – each with a
10 Gb/s Ethernet interface and Linux operating system. We then
installed GridFTP, FDT and UDT on both these machines. We
chose these three protocols based on their performance in our
internal testbed [5]. When the Globus Toolkit was updated to
version 6, GridFTP was updated to support UDT. This update
enabled us to perform memory-to-memory transfers. Multiple
flows are not supported by UDT. Table I provides a summary
of the protocols evaluated in our experiments.

The sender machine’s role is to initiate a connection and
send a 30 GB data file, or streamed data from /dev/zero
to avoid disk read overheads, ten times using GridFTP, FDT
and UDT. We used one through eight data flows for GridFTP
and FDT. The receiver machine accepts this connection and
writes the transferred data to its file system unless it is from
/dev/zero, otherwise the data is sent to to /dev/null to
avoid disk write overheads.

Host TCP tuning for each machine was done as per in-
structions in Energy Science Network’s host tuning guide7. We
used CUBIC TCP for our congestion control algorithm. Jumbo
frames were enabled by default. We did not increase the TCP
sender’s buffer size for FDT because it is implemented in Java.
We found that changing the Java Virtual Machine’s maximum
memory size, and that of FDT’s TCP socket buffer made FDT
unstable. For GridFTP, we set our TCP sender’s buffer size to

3http://www.glif.is/meetings/2014/
4https://www.nordu.net/
5http://www.internet2.edu/
6http://www.geant.net/
7http://fasterdata.es.net/host-tuning/linux/

 0

 1

 2

 3

 4

GridFTP FDT UDT

G
o
o
d
p
u
t(

G
b
/s

)

Protocols

Disk-Disk

Mem-Mem

Fig. 2. Goodput measured for protocols using a single flow

an arbitrary size of 180 MB.

IV. PERFORMANCE EVALUATION USING A SINGLE FLOW

For all our experimental file transfers we recorded packet
traces using tcpdump. We first present results from our anal-
ysis of a single data flow followed by discussion of experiments
involving multiple flows.

Figure 2 shows the performance of each file transfer using a
single flow. GridFTP performed better with file transfer, indicat-
ing that it is most efficient at reading and writing via the EXT4
file system, compared to the other two protocols. Although
these protocols have different transfer rates (i.e. measured
goodput), their transfer rates are all less than 0.5 Gb/s. It was
evident that file system I/O performance was limiting the file
transfer rate. Hence, we decided to remove that bottleneck by
reading data from /dev/zero and writing it to /dev/null.
After removing the bottleneck, GridFTP improved more than
600% and FDT improved more than 260%. UDT showed no
significant difference when the file system I/O limitation was
removed.

In our previous study, using a smaller national testbed [6],
all protocols achieved significantly higher throughput. With
disk-to-disk transfer, GridFTP, UDT and FDT achieved 1.3
Gb/s, and with memory to memory transfer, GridFTP achieved
5 Gb/s and FDT achieved 4.5 Gb/s. The main causes of
reduced performance in the international testbed are large RTT
and small TCP socket buffer sizes. Compared to our national
testbed, where RTT was 10 ms, this testbed has an RTT 30 times
longer. This causes CUBIC TCP to take longer to increase its
congestion window size, as well as for UDT to increase its
sending rate after packet losses.

V. PERFORMANCE EVALUATION USING MULTIPLE FLOWS

We also measured the multiple flow performance of GridFTP
and FDT. For each test, we used memory-to-memory transfers
to start and terminate multiple flows at the same time. We did
not use UDT because it does not support multiple data flows.

 0

 2

 4

 6

 8

 0 1 2 3 4 5 6 7 8 9

G
o
o
d
p
u
t
(G

b
/s

)

Number of flows

GridFTP

FDT

Fig. 3. Goodput measured for each protocol with 1-8 multiple flows, error
bars show standard deviation

We first report on data transfer results followed by fairness
results.

A. Data Transfer Rate

Figure 3 shows goodput for each protocol using one to eight
parallel data flows. Compared to our previous study [6], there
was a significant increase in throughput as the number of flow
increased for both GridFTP and FDT.

The goodput for both protocols increases until it reaches a
maximum (5 Gb/s for GridFTP and 5.5 Gb/s for FDT). The
goodput of FDT increases more rapidly compared to that of
GridFTP, and the effect of using multiple flows is greater. This
is due to the limitation of TCP socket buffer size.

When multiple flows are used, recovery time for their ag-
gregate throughput is reduced. When multiple flows increase
their congestion window size at the same time at similar rates,
the aggregate congestion window increase rate is much higher
than that of a single flow. Even though there is a higher chance
of losing packets for the aggregated flow, the recovery time to
reach its maximum congestion window size is reduced. Along
with CUBIC TCP, which steadily increases congestion window
size when it is near a previously determined maximum, its
shorter recovery time allows both protocols to increase their
goodput with multiple flows in the long-haul network.

This also happened in our national network experiment [6],
which had shorter RTT, however the recovery time there was
small compared to that of the longer path international network.
The benefit of having shorter recovery time by using multiple
flows diminishes with small RTTs, because the recovery time
for a single flow is almost as small as the recovery time for the
multiple flows.

In a network with shorter RTT (e.g. our national network),
the benefit of using multiple flows is reduced. With its smaller
Bandwidth-Delay Product (BDP) link, a smaller buffer size
allows more throughput. With a small packet error rate, the
effect of faster recovery gets diminished, and single flow with

 0

 5

 10

 15

 20

 0 1 2 3 4 5 6 7 8 9

A
v
e

ra
g

e
 R

T
T

 c
h

a
n

g
e

s
 (

m
s
)

Number of flows

GridFTP

FDT

Fig. 4. RTT changes measured for each protocol with 1-8 multiple flows,
errorbar for standard deviation

moderate buffer size will be as efficient as the multiple flows
because the recovery time for any flow is relatively short.

B. Impact on RTT

We measured RTT values while using GridFTP and FDT
by measuring baseline RTTs before running the experiments
and then during the experiments using ICMP packets with the
ping command. We calculated the average time difference
between the baseline RTTs and the increased RTTs during the
experiments for each protocol with different number of flows,
to investigate the effect of congestion caused by the protocols
building up queues in routers along the path.

Figure 4 shows average increase in RTT measured for each
protocol with growing number of multiple flows. As the number
of flows increases, the average RTT change also increases. The
average RTT change for two to five flows for GridFTP is higher,
although it has high variability, so it has more impact on RTT
than FDT. GridFTP is able to produce more aggregated traffic
compared to FDT, and as a result, its impact on the network
path is greater. Since, both protocols use the same underlying
congestion control algorithm, an increase in goodput for either
protocol leads to an increase in average RTT. Overall, the
average RTT change is higher with multiple flows because more
traffic is injected by the multiple flows.

We found that there are different baseline RTTs for each
flow, one on top of another. We identified with traceroute
that there is a load-balancer within the path that causes flows
to be forwarded into different links for a part of their route.
This produces the slight difference in RTT for each flow.

VI. CONCLUDING REMARKS

We characterized the performance and fairness of three big
data transfer protocols, namely, GridFTP, FDT, and UDT, on a
long-haul international network. We found that GridFTP has the
fastest data transfer rate when using a single flow. UDT has an
implementation issue, which limited its performance. FDT also
has an issue with small buffer size limiting its performance,

however this drawback can be overcome by using multiple
flows in exchange for fairness.

To have better performance, faster file systems and larger
TCP socket buffers in both operating system and application
are required. With our long-haul link, running multiple flows
for a high-speed transfer were beneficial, especially for FDT
(where there was a practical limit on the TCP socket buffer
size). It also reduced recovery time after packet loss events.

We did not find much difference between GridFTP and FDT,
but GridFTP was more stable in terms of handling file system
and TCP socket buffer. FDT is easier to set up because it is
implemented as a Java application, which does not require a
high level of system permission.

REFERENCES

[1] W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, L. Liming, and
S. Tuecke, “GridFTP: Protocol extensions to FTP for the Grid,” Global
Grid ForumGFD-RP, vol. 20, pp. 1–21, Apr. 2003.

[2] I. Legrand, H. Newman, R. Voicu, C. Cirstoiu, C. Grigoras, C. Dobre,
A. Muraru, A. Costan, M. Dediu, and C. Stratan, “MonALISA: An
agent based, dynamic service system to monitor, control and optimize
distributed systems,” 40 YEARS OF CPC: A celebratory issue focused
on quality software for high performance, grid and novel computing
architectures, vol. 180, no. 12, pp. 2472–2498, Dec. 2009.

[3] Y. Gu and R. L. Grossman, “UDT: UDP-based Data
Transfer for High-speed Wide Area Networks,” Comput. Netw.,
vol. 51, no. 7, pp. 1777–1799, May 2007. [Online]. Available:
http://dx.doi.org/10.1016/j.comnet.2006.11.009

[4] M. Meiss, Tsunami: A High-Speed Rate-Controlled Pro-
tocol for File Transfer, 2009. [Online]. Available:
www.evl.uic.edu/eric/atp/TSUNAMI.pdf/

[5] Se-young Yu, N. Brownlee, and A. Mahanti, “Comparative performance
analysis of high-speed transfer protocols for big data,” Local Computer
Networks (LCN), 2013 IEEE 38th Conference on, pp. 292–295, 2013.

[6] ——, “Performance and Fairness Issues in Big Data Transfers,” in
Proceedings of the 2014 CoNEXT on Student Workshop. Sydney,
Australia: ACM, 2014, pp. 9–11.

[7] S. Ha, Y. Kim, L. Le, I. Rhee, and L. Xu, “A step toward realistic
performance evaluation of high-speed TCP variants,” Elsevier Computer
Networks (COMNET) Journal, Special issue on PFLDNet, Feb. 2006.

[8] R. Les Cottrell, S. Ansari, P. Khandpur, R. Gupta, R. Hughes-Jones,
M. Chen, L. McIntosh, and F. Leers, “Characterization and evaluation
of TCP and UDP-based transport on real networks,” Annales Des
Tèlècommunications, vol. 61, no. 1-2, pp. 5–20, Feb. 2006. [Online].
Available: http://dx.doi.org/10.1007/BF03219966

[9] J. Suresh, A. Srinivasan, and A. Damodaram, “Performance Analysis of
Various High Speed Data Transfer Protocols for Streaming Data in Long
Fat Networks,” in Proc. International Conference on ITC, Kochi, Kerala,
India., Mar. 2010, pp. 234 –237.

[10] B. Tierney, E. Kissel, M. Swany, and E. Pouyoul, “Efficient data transfer
protocols for big data,” in E-Science (e-Science), 2012 IEEE 8th Interna-
tional Conference on, Oct. 2012, pp. 1–9.

[11] Se-young Yu, N. Brownlee, and A. Mahanti, “Comparative Analysis of
Transfer Protocols For Big Data,” in 31st International Symposium on
Computer Performance, Modeling, Measurements and Evaluation 2013:
Student Poster Abstracts, Vienna, Austria, 2013, pp. 5–6.

