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Abstract—As most of mobile apps rely on network connec-
tions for their operations, measuring and understanding the
performance of mobile networks is becoming very important
for end users and operators. Despite the availability of many
measurement apps, their measurement accuracy has not received
sufficient scrutiny. In this paper, we appraise the accuracy of
smartphone-based network performance measurement using the
Android platform and the network round-trip time as the metric.
We use a multiple-sniffer testbed to overcome the challenge of
obtaining a complete trace for acquiring the required timestamps.
Our experiment results show that the RTTs measured by the apps
are all inflated, ranging from a few milliseconds (ms) to tens of
milliseconds. Moreover, the 95% confidence interval can be as
high as 2.4ms. A finer-grained analysis reveals that the delay
inflation can be introduced both in the Dalvik VM (DVM) and
below the Linux kernel. The in-DVM overhead can be mitigated
but the other cannot be. Finally, we propose and implement a
native app which uses HTTP messages for network measurement,
and the delay inflation can be kept under 5ms for almost all cases.

I. INTRODUCTION

Mobile devices, notably smartphones and tablets, have al-

ready become essential parts of our daily lives because of

their mobility and rich functionalities. Due to their limited

computational power and storage, they rely on network access

to offload intensive computation tasks to remote servers or

cloud. Moreover, the offloading approach can save energy, thus

extending the battery lifespan [18], [21]. Tongaonkar et al. find

that 84% of apps require permission of Internet access [28]

from a pool of 55K Android apps randomly picked from

the official Android app market. Therefore, understanding

mobile network performance is critical for providing good

quality of experience to users. For example, recent perfor-

mance studies characterize LTE networks [16] and optimize

mobile application performance [29]. The data collected by

Speedtest.net is used for comparing the performance

between cellular and WiFi networks [26].

The importance of monitoring mobile network quality mo-

tivates a number of studies on network performance measure-

ment. These measurement works are conducted on mobile

devices using browsers or measurement apps. The browser-

based measurement is similar to speedtest for desktop in that

the measurement is conducted through mobile browsers [1],

[6]. A more popular approach is using measurement apps on

smartphones, such as [2], [3], [5], [9] for Android, [7], [8] for

iOS, and [4], [10] for Windows Phone. In particular, the Ookla

speedtest app [9] has recorded over 10 million downloads in

the Android app market. These measurement apps can measure

network round-trip time (RTT) and upload/download through-

put. Some of them can even perform traceroute, measure DNS

performance, and characterize HTTP caching behavior [3].

Despite the availability of many measurement apps, their

measurement accuracy has not received sufficient scrutiny.

In this paper, we appraise the accuracy of smartphone-based

network performance measurement. We focus on the RTT

measurement, because it is the most available atomic metric.

Moreover, we consider only Android smartphones and the

measurement-app approach. Similar studies for iOS and others

will be our future work. We first identify three implementa-

tion models for measurement apps: Native ping (commands

external to Java), Inet ping (using network-related classes in

Java/Android with TCP SYN/RST packets), and HTTP ping

(using HTTP-based Java classes with TCP data packets). For

the purpose of evaluation, we develop a dedicated measure-

ment app for each model.

A major challenge in measuring their accuracy is setting up

a reliable testbed environment to obtain accurate timestamps

when the packets are just sent out to and received from

the air. Unlike fixed network measurement, a single sniffer

is not able to capture all the packets because of frequent

missing frames. By employing multiple sniffers, we are able

to merge partial traces into an almost complete trace. The

entire process requires us to resolve the synchronization issues

for the smartphone and sniffers, recover the timestamps, and

investigate the impact of clock skew between the smartphone

and sniffers on the results.

We have conducted experiments on the testbed using three

Android phones with different configurations installed with

the three measurement apps. Although the experiments are

conducted in a WiFi network, part of the results can also

be applied to cellular network. Below is a summary of our

findings which, to our best knowledge, have not been reported

before.

1) (Highly inflated RTT measurement) The experiment re-

sults show that the RTTs measured by the apps are

all inflated for all three phones, ranging from a few

milliseconds to tens of milliseconds (ms), Moreover,

the 95% confidence interval can be as high as 2.4ms.

Although there is a wide range of latency performance

in mobile networks, the cloud infrastructure continues



to help reduce the network latency for many apps. For

example, the median RTT from University of Connecticut

to Akamai-Hartford servers is only 8.5ms [12]. Therefore,

the RTT inflation introduced by the measurement apps is

too significant to ignore.

2) (Causes for the RTT inflation) By obtaining the times-

tamps when the probe and response packets transit in the

Android kernel, we are able to conduct a finer-grained

analysis on the inflated delay. Our analysis reveals that the

delay inflation can occur both in the Dalvik VM (DVM)

and below the kernel. We also identify that the delay

inflation introduced by the DVM is asymmetric for packet

sending and receiving, but it can be mitigated. However,

another part of delay inflation that occurs between the

kernel and hardware/driver cannot be easily evaded.

3) (Mitigating the RTT inflation) Based on the cause analy-

sis, a promising approach to mitigating the delay inflation

is to bypass the DVM. We therefore implement the core

measurement logic into a native C program and invoke

it through an external system call in the app. Experiment

results show that the delay inflation can be kept under

5ms for most of the cases. Moreover, employing TCP data

packets, instead of TCP control messages, as measure-

ment probes, can further minimize the kernel-hardware

overhead.

The remainder of the paper is organized as follows. In §II,

we first introduce our approach to measuring the accuracy of

three main methods in a testbed. In §III, we detail the different

aspects of our testbed setup, including the use of multiple

sniffers to obtain a complete trace for acquiring timestamp

information. §IV reports the evaluation results obtained from

the testbed. We then propose in §V a measurement method for

mitigating the delay inflation. After highlighting the related

works in §VI, we conclude the paper in §VII.

II. OUR APPROACH

Carrying out network measurement with mobile devices is

much more challenging than the desktop environment, even

though the core methodology is similar in both cases. A

major difference is the operating system architecture. Android

measurement apps usually run in a virtual machine. The apps

could therefore encounter a larger system overhead in sending

probe packets and receiving response packets, thus inflating

the actual network delay. In this paper, we consider the

accuracy of the network RTT measurement, because it is most

available, and it can be used for obtaining other performance

metrics, such as jitter, available bandwidth, and capacity.

A. Measuring the delay overhead

To evaluate the accuracy of Android measurement apps,

we use the delay overhead defined in [20], which is the

difference between the measured and the actual network delay.

Considering a simple probe-response scenario in Fig. 1, a

measurement app sends out a probe packet at time tou to

a web server (or other types of target). The probe packet

elicits a response packet from the server, arriving at the

measurement app at time tiu. The measurement app thus uses

du (= tiu − tou) as the network RTT. Obviously, this measured

RTT is generally larger than the actual RTT dn (= tin − ton),

where ton (tin) is the time for the probe (response) packet

to leave (arrive at) the smartphone. The delay overhead is

therefore defined as

∆d = du − dn = (tiu − tou)− (tin − ton). (1)
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Fig. 1: Measurement flow for Android apps.

There are three possible factors contributing to the delay

overhead: (i) the timing accuracy of the outgoing and receiving

packets, (ii) the delay for Android to propagate the probes to

the kernel and network stack, and the delay for delivering

the responses to the app, and (iii) the delay for the hardware

(wireless network adaptor) to send and receive packets.

For factor (i), Android provides several timing

functions, such as System.nanoTime() and

System.currentTimeMillis(). Although these

two functions have different resolutions (ns vs. ms) and

map to different POSIX functions clock_gettime()

and gettimeofday(), they share the same back-end

function clock_gettime() through vsyscall according

to POSIX.1-2008 [27]. Giucastro tested the granularity and

performance of the two functions on some Android phones,

and found that the average cost for executing a such timing

function is about 1µs [15]. Considering that the network

delay is usually at ms level, the overhead of calling the timing

functions is negligible.

We will therefore focus on the other two factors. To further

quantify them, we also include two other timestamps tik and tok
which are obtained when the packets are at the kernel. While

we could obtain the kernel timestamps using tcpdump (see

§III-A), it is much more challenging to obtain the two network

timestamps ton and tin. In wired network, these two timestamps

can be easily obtained by placing an external packet sniffer

to capture the packets diverted from a network tap, because

the fixed network is more reliable (i.e., the packets are seldom

dropped by the sniffer), and the measurand and the sniffer can

be easily time-synchronized.

In wireless network, a single wireless sniffer is not reliable

enough to capture all the packets in the air (see §III-A). Using

multiple sniffers, however, requires a careful trace merging

and timestamp recovery. Moreover, as Android phones do not

support PTP, synchronizing the clocks between the external



sniffer and the phone is difficult. Another concern is due to

the mechanism of FullMAC MLME (MAC Sublayer Man-

agement Entity) in which all 802.11 wireless frames are first

transformed into IEEE 802.3 Ethernet frames before being

delivered to the kernel. Such transformation could further

increase the delay overhead. We will explain how we tackle

these issues in §III.

B. Building measurement apps in Android

Android provides several interfaces or APIs that can be

utilized for implementing a network measurement app without

rooting the devices. We have studied the RTT measurement

methods employed by a number of Android apps, such as

MobiPerf [2], Netalyzr [3], and Ookla Speedtest [9], by

inspecting their codes and the packets exchanged between the

Android phone and servers. They can be classified into the

following three methods.

Native ping. This method executes external shell commands

through a Java Runtime class. A measurement app can

directly invoke the ping program, which is located at a

default location /system/bin, to perform ICMP-based

RTT measurements. The ping program sends/receives

the ICMP Echo messages on behalf of the measurement

app and returns the measurement results. Although the

ping program can only provide the resolution of 1ms

or 0.1ms, it is the only way to handle ICMP packets

without modifying the Android framework. Other than

ping program, we find that executing any pre-compiled

C program packaged with the app is also feasible.

Inet ping. The measurement app can also employ the net-

work related classes provided by Android or Java.

For example, the method isReachable of class

java.net.InetAddress sends TCP SYN packets

on port 7 (Echo) to a remote host1 to elicit TCP

SYN ACKs (if the port is open) or TCP RST packets.

Therefore it can be utilized for implementing a TCP-

based ping app. Besides, classes java.net.Socket

and java.net.DatagramPacket can be used for

respective TCP and UDP throughput tests.

HTTP ping. HTTP-based classes, such as class

java.net.HttpURLConnection, can also be

used for implementing a measurement app. Here the

outgoing and incoming packets are complete HTTP

request and response messages. Unlike Inet ping, any

web server can serve as a remote destination without

the need of setting up additional measurement servers.

However, recording sending time after the TCP three-

way handshake is required to avoid including the delay

of connection establishment into the measurement.

To test the performance of these methods, we have de-

veloped a test app for each method. To minimize the

workload of the test apps put on the phone, we com-

pute all RTT estimates offline. For Native ping, the test

1Although the official documentation says the method first tries ICMP and
falls back to TCP when it fails, we find that the ICMP option has not been
implemented.

app only parses and saves the output from the ping pro-

gram without any further calculation. The test apps for

Inet ping and HTTP ping employ the InetAddress and

HttpURLConnection classes, respectively. We simply log

the timestamps of packet sending and receiving events with the

system time function System.currentTimeMillis()

or System.nanoTime(). For HTTP ping, we limit the size

of HTTP request/response to no larger than 300 bytes, so that

each message can be sent in a single TCP packet.

III. A MULTIPLE-SNIFFER TESTBED

Fig. 2 shows the testbed which consists of a measurement

server, which is equipped with a 1.86GHz Intel Core 2 Duo

processor (E6320) and 2GB memory, and a IEEE 802.11g

wireless AP, Netgear WNDR3800. We use three Android

phones—Google Nexus 5, HTC One, and Sony Xperia J—

to conduct the experiments. Their detailed hardware config-

urations and OS versions are listed in Table I. We choose

these phones for their diverse hardware capability which may

produce different results. The OS versions cover the latest 4.4

and two older versions. We have also rooted the phones, so that

they can run the cross-compiled version of tcpdump through

adb (Android Debug Bridge) and scripts.
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Fig. 2: The testbed setup where the packet sniffers, mobile

phone, and wireless AP are placed within a distance of 0.5m.

TABLE I: The mobile phones used in the experiment.

Models OS Ver. Hardware specifications

Google
Nexus 5

4.4.2

Qualia MSM8974 Snapdragon
800 CPU (quad-core 2.26GHz),

2GB MEM

HTC One 4.2.2

Qualia APQ8064T Snapdragon
600 CPU (quad-core 1.7GHz),

2GB MEM

Sony
Xperia J

4.0.4
Qualia MSM7227A CPU (1GHz),

512M MEM

The three external packet sniffers are run on IBM T43 lap-

tops running Ubuntu 12.04. We also wire-connect the sniffers

to the AP, so that they can be controlled through SSH. We run

the three test apps, each of which implements one of the three

methodologies mentioned in §II-B, one by one on each phone.

These apps send probes to the measurement server to elicit

response packets and record the timestamps. We introduce an

additional delay on the server side to simulate four different

RTTs: 20ms, 50ms, 85ms, and 135ms. To avoid the RTT being

affected by packet retransmission, we ensure there are no



probe losses during the measurement. Since wireless packet

capturing could result in frame loss or duplication, we repeat

each experiment for 100 times. Meanwhile, tcpdump is

running in the background on the phone to obtain the kernel

timestamps tik and tok. The impact of running tcpdump is

negligible, because the traffic volume in each experiment is

very small (<2 packet/s).

A. Wireless packet capturing

We use the packet capturing method described in [30].

We enable the monitor mode and promiscuous mode in

the wireless network adaptors of the sniffers to capture the

wireless frames (including the IEEE 802.11 header, physical

layer header, and higher-layer protocols’ information) using

tcpdump. To simplify the decoding of wireless frames, we

also disable the security options, such as WPA. We have not

performed clock synchronization among the sniffers, because

hardware timestamping is not supported and software times-

tamping cannot meet our requirement. We use the method to

be described in §III-B to evade the clock drift offline.

We employ three sniffers, because a single sniffer will miss

many packets [30], [24]. Although we put the AP, mobile

phone, and the sniffers very close together (within a distance

of 0.5m), we still find random frame losses and duplications

in the captured traces. To ensure the completeness of a packet

trace, Serrano et al. proposed to use multiple sniffers to merge

the individual traces [24]. In our case, after merging the packet

traces from the three sniffers, the trace completeness can reach

to more than 99%.

B. Trace merging and time recovering

To merge the incomplete traces together, we first assign a

trace as the main trace and others as reference traces. Then

the missing frames in the main trace can be identified after

comparing all traces. Finally, we insert the missing frames

to the correct locations in the main trace and adjust their

timestamps, so that they are coherent to the local frames. The

most challenging part in this procedure is to accurately recover

the timestamps of the missing frames. A most straightforward

approach is to synchronize the sniffers, but the results do not

meet our expectation. We therefore use reference frames (e.g.,

beacon frames) for “frame-level synchronization.” However,

considering the timestamp variation when a system reports its

current time, simply performing linear translation between two

reference frames [22] could lead to fitting errors. Accordingly,

we employ a linear regression algorithm to take care of the

time fluctuations and clock skews present in the sniffers.

Our algorithm first obtains the clock skews between each

pair of the sniffers by applying linear regression to the beacon

frames, as beacon frames are observed with the smallest time

fluctuations by all sniffers. The clock skew is re-calculated

for every set of data which is collected in around 180s. Our

measurement results show that the clock skew progresses

linearly during such a short period. When computing the

timestamps of missing frames, we treat beacon frames as

reference frames for the same reason.

pkt 1

pkt 1 pkt 2

pkt 2 pkt n

CB
(  )t1 CB

(  )t2

pkt n
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(  )t1 CA

(  )t2

Time

A

B

Fig. 3: Procedure of trace merging and time recovery.

Fig. 3 shows the procedure of how we recover the timestamp

of a missing frame. Suppose that we want to recover a lost

frame pkt2 in the main trace A from the reference trace B.

Let CA(t) and CB(t) be the times reported by sniffers A and

B at time t. We denote the clock skew of A relative to B

by δ{A,B}(t) = C′
A(t) − C′

B(t), where C′
A(t) ≡ dCA(t)/dt

and C′
B(t) ≡ dCB(t)/dt, ∀t ≥ 0. To recover the timestamp

CA(t2), we make use of the closest beacon frame as the

reference frame, which is pkt1 in Fig. 3, in both traces:

CA(t2) = CA(t1) + (CB(t2)− CB(t1)) +

∫ t2

t1

δ{A,B}(t)dt.

(2)

Since
∫ t2

t1
δ{A,B}(t)dt = δ{A,B}(t)× (t2 − t1), we have

CA(t2) = CA(t1)+(CB(t2)−CB(t1))+δ{A,B}(t)×(t2−t1).
(3)

As the interval between two consecutive beacon frames is

around 100ms, the missing frame is separated from the closest

beacon frame by no more than 50ms. Given such short period

of time and the typical clock skew for computer grade crystals,

t2 − t1 can be replaced by CB(t2) − CB(t1). Therefore, we

can recover CA(t2) with

CA(t2) ≈ CA(t1)+(CB(t2)−CB(t1))×(1+δ{A,B}(t)). (4)

C. Clock skew handling

External sniffers and phones are also running different

clocks. As tos and tis are measured from outside, we would

like to know whether the RTTs estimated by the sniffers are

comparable to the phones’. Similar to §III-B, let Cp(t) and

Cs(t) be the times reported by the phone and sniffer at time t,
and δ{p,s}(t) the clock skew between the phone and the sniffer.

For a time interval (t1,t2), the difference of the measured

duration ∆D{p,s} is

∆D{p,s} = (Cp(t2)− Cp(t1))− (Cs(t2)− Cs(t1)).(5)

=

∫ t2

t1

δ(t)dt. (6)

We have tested several Android phones and wireless snif-

fers. The clock skews among them are all within the range

of ±100 ppm (parts per million). For an end-to-end network

path, the RTT is usually tens to hundreds milliseconds [13].

Taking 100ms as an example, the measured RTT difference

could be smaller than 10µs, which is small enough to ignore.

Therefore, the delay overhead in Eqn. (1) can be computed by

∆d ≈ (tiu − tou)− (tis − tos). (7)



IV. EVALUATION

Table II presents the means and 95% confidence intervals of

the delay overheads measured for the three test apps (methods)

and four emulated RTTs. Compared with the RTTs observed

by the external sniffers, the RTTs measured by the apps are

inflated significantly for all three phones. The delay overheads

can range from a few milliseconds to tens of milliseconds,

and the 95% confidence interval can be as high as 2.4ms.

The inflated RTT measurement is too significant to ignore,

considering the network delay today is getting smaller due

to the prevalence of CDNs and cloud services. For example,

the median RTT from University of Connecticut to Akamai-

Hartford servers is only 8.5ms [12].

TABLE II: Delay overheads measured when

System.currentTimeMillis() is used (mean with

95% confidence interval, in ms).

Phone*
Emulated RTT (ms)

20 50 85 135

N
at

iv
e

p
in

g G
7.700 6.028 14.078 13.963
±2.331 ±0.811 ±0.684 ±0.691

H
2.108 1.177 5.179 0.849
±0.726 ±0.292 ±0.564 ±0.281

S
6.779 7.840 9.999 8.387
±1.129 ±0.932 ±1.039 ±1.191

In
et

p
in

g

G
11.931 12.514 16.211 15.874
±1.063 ±0.779 ±0.833 ±0.787

H
7.243 7.470 8.551 7.060
±1.907 ±0.815 ±2.413 ±0.821

S
13.822 12.223 12.814 12.511
±1.327 ±1.142 ±1.146 ±1.055

H
T

T
P

p
in

g G
6.481 7.651 9.156 10.790
±0.855 ±0.963 ±0.703 ±0.911

H
6.566 7.151 7.222 6.675
±0.588 ±0.957 ±1.041 ±0.739

S
11.206 11.153 11.805 12.987
±0.947 ±0.855 ±0.987 ±1.312

Note ∗: G for Google Nexus 5, H for HTC One, and S for Sony Xperia J.

A. Overview

As summarized in Table II, each test app (method) suffers

from high delay inflation during the RTT measurement. To

investigate the distribution of the delay overheads, we plot the

probability densities of the nine sets of measurement results

in Fig. 4. Each subplot includes the measurements by the four

emulated RTT cases for one app (method) and one phone.
1) Native ping: For phone G, two different patterns can

be observed. When the emulated RTTs are 20ms and 50ms

(short RTTs), the distributions of the delay overheads almost

coincide, and the peak is at around 4.8ms. But when the RTT

increases to 85ms and 135ms (long RTTs), most of the delay

overheads occur at ∼16ms. Phone S also has two different

distribution patterns: one for 20ms and the other for other

three cases. The delay overheads for the 20ms case are mainly

located at ∼2.4ms, but it spreads over a larger range (from 3ms

to 14ms) than the other three cases. The delay overheads for

phone H is unexpectedly small (concentrated at 0.5∼0.7ms),

which is the only case that the delay overheads are smaller than

1ms. Interestingly, delay deflation can be observed for all three

phones. We conjecture that it is due to the coarse resolution

of measurement results that ping program can provide.

2) Inet ping: Similar to Native ping, phone G also has two

different patterns. The overheads are concentrated at ∼14ms

for the cases of 20ms and 50ms, and ∼18ms for the other

two. For phone H, a bimodal distribution can be observed

for all four cases with peak values at 3.5ms and 9ms. At the

first glance, phone S has a more complicated distribution, but

in fact it consists of two types of bimodal distribution: peak

values of 8.5ms and 18ms for short RTTs, and peak values of

6ms and 13.8ms for long RTTs.
3) HTTP ping: Both phones H and S have relatively more

consistent delay overheads, most of which occur at 5.8ms

or 10ms. However, there are still two patterns for phone

G: a bimodal distribution for short RTTs and a unimodal

distribution for long RTTs.

To sum up, the same Android phone has different perfor-

mance for different measurement methods. Although it is hard

to say which method is the best, HTTP ping and Native ping

exhibit comparatively smaller delay overheads for most of the

cases. By comparing the results from Inet ping and HTTP

ping which use TCP SYN/RST packets and TCP data packets,

respectively, we find that establishing a new TCP connection

may incur a higher delay overhead than processing content in

an existing connection. Generally speaking, most of the delay

overheads are observed as RTT-independent, except for phone

G for which the delay overheads correlate with the RTTs:

smaller (larger) overhead for short (long) RTTs.

B. Effect of timing functions

The results presented in Table II and Fig. 4 are mea-

sured when function System.currentTimeMillis()

is used. Since it is reported that this function could have

coarse granularity (such as ∼15ms) in some OS [20],

we also implement the test apps with the more precise

System.nanoTime() for the purpose of comparison. We

perform experiments with the same setting described in §III,

and link the results together with the ones that obtained by

System.currentTimeMillis(). To better visualize the

effect of the two timing functions, we use box plots to present

the data in Fig. 5. In each box-and-whisker plot, the top and

bottom of the box are given by the 75th and 25th percentile,

and the mark inside is the median. The upper and lower

whiskers are the maximum and minimum, respectively, after

excluding the outliers. The outliers above the upper whiskers

are those exceeding 1.5 of the upper quartile, and those below

the minimum are less than 1.5 of the lower quartile.

We only present the data of phone G in detail,

since the other two phones have the similar results.

The figures show that the delay overheads measured

by System.nanoTime() is similar to those by

System.currentTimeMillis(). Considering the

relatively large delay inflation, the overhead of executing a

timing function is therefore not a key factor to consider for

measurement accuracy.

C. Explaining the delay overheads

To locate where the overheads are introduced, we dissect

the round-trip delay overheads into several components. Back
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Fig. 4: PDF plots of the delay overheads (by apps and phones).
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Fig. 5: Delay overhead comparison in box plot for phone G

(red/m for System.currentTimeMillis(), and cyan/n

for System.nanoTime()).

to the packet sending and receiving processes in Fig. 1, a

packet needs to be delivered to the Linux kernel before it

reaches the network (for the outgoing direction) or the app

(for the incoming direction). Supposing that the outgoing and

incoming packets arrive at the kernel at times tok and tik
respectively, we then calculate the kernel delay overhead ∆dk
occurred between the kernel and air medium:

∆dk = dk − dn = (tik − tok)− (tin − ton). (8)

Similarly, the app delay overhead ∆du that takes place be-

tween the app and kernel can be computed as

∆du = du − dk = (tiu − tou)− (tik − tok). (9)

By calculating these two types of delay overheads, we can

identify the place where the delay overheads are introduced.

Note that the two overhead components are independent,

because the magnitude of ∆dk depends on the performance

of hardware/driver of the network interface, whereas ∆du the

performance of the Android system. Although our evaluation

in this paper is based on IEEE 802.11g network, the analysis

of ∆du is still valid when the mobile network is changed to

others, such as HSPA and LTE.

As described in §III, during our previous experiments, we

also run tcpdump in the background on those three test

phones, which allows us to obtain tok and tik in the kernel space

with bpf and libpcap. We then calculate and plot the two

types of delay overheads in box plot in Fig. 6. Figs. 6(a), 6(d),

and 6(g) for Native ping clearly show that ∆du for all three

phones is very close to 0, suggesting that the packets are

mainly delayed between the kernel and physical link. Similar

to Native ping, ∆dk for Inet ping contributes the majority

of the total delay overheads, as shown in Fig. 6(b), 6(d),

and 6(f), except that the layer above the kernel space adds

2ms to 4ms more delay. As for HTTP ping, phones H and

S experience much larger ∆du than ∆dk (around 5.5ms vs.

0.6ms and 7.5ms vs. 2.5ms, respectively, as shown in Figs. 6(f)

and 6(i)). In particular, phone G has a totally different pattern

from H and S, having ∆du relatively close to ∆dk. Only

when the network RTT increases to 85ms and 135ms will

∆dk overtake ∆du.

Fig. 6 also indicates that the inconstancy of the delay

overheads (∆d) is chiefly caused by ∆dk. Since the network

adaptor on the phone cannot explicitly support hardware timer

or SoftMAC, we are unable to further decompose ∆dk without

hacking the firmware. Therefore, it is not possible to identify

whether the delay is introduced by the driver or hardware.

What we can only say is that the physical link or driver react

slower to ICMP and TCP SYN/RST messages than TCP data

packets.

Our analysis shows that Native ping introduces nearly no

overhead to the application but Inet ping and HTTP ping will.

Note that the major difference between Native ping and the

others is the measurement execution manner: external system

call vs. in app. In the external system call, the external ping
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(a) Native ping (Google Nexus 5).
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(b) Inet ping (Google Nexus 5).
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(c) HTTP ping (Google Nexus 5).
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(d) Native ping (HTC One).
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(e) Inet ping (HTC One).
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(f) HTTP ping (HTC One).
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(g) Native ping (Sony Xperia J).
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(h) Inet ping (Sony Xperia J).
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(i) HTTP ping (Sony Xperia J).

Fig. 6: Box plots for the app delay overheads (∆du, red) and kernel delay overheads (∆dk, cyan).

runs as a native Linux program, whereas the app in the in-app

approach is implemented in Java APIs and runs as an instance

of the DVM. In fact, invoking a Java API usually involves

several more function calls. For each additional call, DVM

needs to consume more bytecode instructions (e.g., pushing

parameters into virtual registers). Moreover, network-related

Java APIs are finally mapped to the bionic C library, which

is equivalent to the BSD’s standard C library, through Java

Native Interface (JNI). Due to the extra translation, JNI could

also lower the performance. Therefore, performing network

measurement within an app could result in more delay than a

native Linux program.

Another noticeable observation is that for Inet ping and

HTTP ping ∆du slightly increases from phone G to phone

H and from phone H to phone J, which is the same ranking of

the hardware performance of the phones. As the measurement

operation for the two apps takes place in the DVM, we can

infer that a phone with more powerful computation capability

generally has a smaller ∆du.

D. Incoming vs. outgoing

Running tcpdump also allows us to analyze the

(a)symmetry of the delay overheads occurring in the app. Since

Android uses the same clock source of the underlying Linux

system, the timestamps recorded by the measurement apps

and tcpdump are comparable. Therefore, we can measure the

outgoing app delay overhead ∆dou = tok−tou, and the incoming

delay overhead ∆diu = tiu−tik. We plot the probability density

of the overheads per direction in Fig. 7 for Inet ping and in

Fig. 8 for HTTP ping. Note that we cannot analyze Native

ping, because the external ping program does not provide

the packet send and receive times.

Both Fig. 7 and Fig. 8 show significant delay asymmetry.

For example, for Inet ping, establishing a TCP connection

costs more time in the outgoing direction. The disparity can be

larger than 1ms for phone H. On the other hand, the majority

part of the app delay overhead occurs when receiving and

processing the HTTP messages for HTTP ping. Altogether, the

bidirectional delay overheads follow a unimodal distribution.

The only exception is phone G, which follows a bimodal

distribution in the incoming direction for HTTP ping (as shown

in Fig. 8(a)).

We believe the asymmetry of ∆du is caused

by the interpretation execution nature of DVM.

For example, the method isReachable of class

java.net.InetAddress used in Inet ping involves sev-

eral functions defined in libcore/io/IoBridge.java,

such as IoBridge.socket(), IoBridge.bind(),

and IoBridge.connect(), which can be further

traced to three native functions (socket(), bind(),

and connect()) in libcore/io/Posix.java. By

analyzing the source code of the Android framework,

we can find that the native functions are bridged to the

functions defined in libcore_io_Posix.cpp and finally

mapped to the functions defined in the bionic libc library

(sys/socket.h). To sum up, after recording the sending

time tou in the app, a series of function calls are executed, and

eventually the kernel sends out a TCP SYN packet at time

tok, which is captured by tcpdump. However, for the reverse
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(b) HTC One.

−1 0 1 2 3 4 5
0

0.5

1

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

Outgoing

 

 

−1 0 1 2 3 4 5
0

0.2

0.4

0.6

Delay Overhead (ms)

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

Incoming

 

 

20ms

50ms

85ms

135ms

20ms

50ms

85ms

135ms

(c) Sony Xperia J.

Fig. 7: PDF plots of the delay overhead asymmetry (Inet ping).
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Fig. 8: PDF plots of the delay overhead asymmetry (HTTP ping).

direction, when the kernel receives the TCP RST packet, it

just needs to notify the DVM without any further operations,

thus incurring less overhead in the incoming path.

V. A BETTER PRACTICE

An important observation gleaned from the analysis of the

overhead components in the last section is the negligible ∆du
for Native ping. To validate whether bypassing the DVM

can mitigate the delay overhead, we implement a simple C

socket program which supports RTT measurements with TCP

SYN/RST packets and HTTP GET request/response messages.

Similar to HTTP ping, we limit the size of HTTP messages

to no more than 300 bytes, so that each message can be trans-

mitted in one TCP packet. We employ clock_gettime()

to record the send and receive timestamps. After cross-

compilation, the executable binary is packed into a test app,

called External ping. This app can invoke the binary through

the Java class Runtime. We test the app with the same

settings described in §III and compute ∆du based on Eqn. (9).

We compare ∆du measured by External ping to the other

two in-DVM apps in Table III. We only present the results

obtained by phone G, because the other two phones have sim-

ilar characteristics. As expected, ∆du drops after employing

the external system call, with a decrease of 1.6ms ∼ 2.2ms

TABLE III: A comparison of ∆du (Ext) for external C socket

program and in-DVM measurement (App) (mean with 95%

confidence interval, in ms).

Type
Emulated RTT (ms)

20 50 85 135

In
et

p
in

g

App
2.946 2.443 2.637 2.828
±0.695 ±0.200 ±0.251 ±0.236

Ext
0.736 0.794 0.798 0.830
±0.121 ±0.139 ±0.154 ±0.134

H
T

T
P

p
in

g

App
3.312 3.824 3.157 4.542
±0.663 ±0.721 ±0.540 ±0.834

Ext
1.095 1.246 1.289 1.365
±0.075 ±0.098 ±0.112 ±0.186

for Inet ping and 1.9ms ∼ 3.2ms for HTTP ping. Besides, the

overheads are more stable with the confidence intervals smaller

than 0.2ms. We also find that the HTTP ping introduces 0.4ms

∼ 0.5ms more delay than Inet ping. The additional delay is due

to the fact that HTTP messages need to be further processed

in the user space, but handling TCP SYN/RST packets can be

completed within the kernel.

We advocate using HTTP messages for the best practice

measurement on Android, because the kernel delay overheads

for handling HTTP messages are more stable than for TCP

control messages (as shown in Fig. 6). Our modification of

External ping does not require root privilege, thus facilitating



a wide deployment of the app. By repeating the measurements

and computing the mean or median, the delay overhead can be

kept within 5ms or even lower. Although External ping can-

not completely remove the delay overhead, the measurement

results it produces are much closer to the real network RTTs.

VI. RELATED WORKS

A most closely related work is [20], which appraised the

accuracy of browser-based measurement methods in fixed net-

work. However, their methodology cannot be applied straightly

to the mobile network measurement. Other measurement stud-

ies based on smartphones users include [14], [16], [17], [25].

In particular, a simple logger was employed in [14] to collect

the network usage information from Android and Windows

Mobile users, whereas LiveLab [25] measured wireless net-

works in iOS. In [16] and [17], the performance of 4G LTE

and 3G networks was evaluated using 4GTest and 3GTest.

These existing apps are designed with more concern on privacy

issues or energy consumption, but their accuracy has not

received any attention.

In the system performance area, several studies evaluated

the performance of JNI or DVM. For example, Oh et al. inves-

tigated the performance impact of DVM on Android apps [23].

Batyuk et al. compared the performance between native C

and Java applications for identical tasks [11], and showed

that native C applications can be up to 30 times faster than

running Java in DVM. But their work drew conclusions from

Android emulator and Linux x86 platform. Lee and Jeon also

carried out similar study for five algorithms [19] and found that

JNI communication delays were about 0.15ms. These works

mainly focused on the performance comparison of specific

algorithms but do not study the relationship between system

delay and network delay measurement.

VII. CONCLUSIONS

In this paper, we appraised the accuracy of measurement

apps in Android phones. We overcame the main challenge

of obtaining accurate packet timestamps from the wireless

medium and setup a reliable wireless testbed. We found that

the RTTs measured by the apps are significantly inflated.

After conducting careful investigations, we identified the delay

overhead introduced by the DVM is not negligible and sym-

metric in the send and receive directions. Finally, we proposed

to mitigate the delay overhead by implementing a native

measurement app using HTTP messages for measurement.

The results showed that the delay overhead can be reduced

to less than 5ms. We believe the improvement can provide

more accurate understanding about the real network status for

those who care more about the network quality than the user-

perceived performance. In the future, we plan to extend our

work to other mobile platforms, such as iOS and Windows

Phone.
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