
A Brief Overview of the NEBULA
Future Internet Architecture

Tom Anderson1 Ken Birman2 Robert Broberg3 Matthew Caesar4

Douglas Comer5 Chase Cotton6 Michael J. Freedman7 Andreas Haeberlen8

Zachary G. Ives8 Arvind Krishnamurthy1 William Lehr9 Boon Thau Loo8

David Mazières10 Antonio Nicolosi11 Jonathan M. Smith8 Ion Stoica12

Robbert van Renesse2 Michael Walfish13 Hakim Weatherspoon2

Christopher S. Yoo8

1University of Washington 2Cornell University 3Cisco Systems 4University of Illinois
5Purdue University 6University of Delaware 7Princeton University 8University of Pennsylvania
9Massachusetts Institute of Technology 10Stanford University 11Stevens Institute of Technology

12University of California, Berkeley 13University of Texas, Austin

ABSTRACT
NEBULA is a proposal for a Future Internet Architecture. It is
based on the assumptions that: (1) cloud computing will comprise
an increasing fraction of the application workload offered to an In-
ternet, and (2) that access to cloud computing resources will de-
mand new architectural features from a network. Features that we
have identified include dependability, security, flexibility and ex-
tensibility, the entirety of which constitute resilience.
NEBULA provides resilient networking services using ultra-
reliable routers, an extensible control plane and use of multiple
paths upon which arbitrary policies may be enforced. We report
on a prototype system, Zodiac, that incorporates these latter two
features.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design; C.2.2 [Computer-Communication Net-
works]: Network Protocols; C.2.6 [Computer-Communication
Networks]: Internetworking

Keywords
Internet, network architecture, security, routing, extensibility

1. INTRODUCTION
The Internet architecture [8, 23, 9] is an obvious success, with inter-
esting applications continuing to emerge at a rapid pace. However,
certain applications categories remain a concern.

Imagine, for example, a healthcare application that might use a
future Internet: a diabetic wears both an insulin pump and a con-
tinuous glucose monitor (CGM). Data from the CGM are sent over
the network to a data center every 5 minutes, while other data such
as images of meals, accelerometer readings of activity, etc., are sent
as needed. These data are logged, and analyzed against both histor-
ical data from the individual and anonymized masses of data from
other data sources. Machine learning algorithms are used to esti-

mate appropriate micro-dosages of insulin to be delivered by the
pump, as well as to detect anomalies that might can be forwarded
to human experts who can ensure that no medical problem has oc-
curred. Dosage values are downloaded using the network into the
patient’s insulin pump.

Such a healthcare application has clear dependability and secu-
rity requirements. Such needs are clearly shared by other applica-
tions, including teleoperation of vehicles, telemanufacturing tasks
such as remote 3-D printing, and remote feedback scenarios such
as telesurgery.

The challenge in designing an architecture, as opposed to a so-
lution to a specific problem, is that one must anticipate the emer-
gence of unanticipated applications. Any future Internet must pre-
serve the existing Internet’s flexibility and extensibility while ac-
commodating important new classes of applications, such as those
sketched above. A key question is whether to attempt to enumerate
many possible futures and accommodate all of them, or to pick a
likely future and do research towards enabling that choice.

We chose the latter strategy, and focused NEBULA on cloud
computing, as we discuss further in Section 3. We report on our ar-
chitectural choices in Section 4, discuss integration in Section 5, an
initial prototype in Section 6, some initial reflections on the project
in Section 7 and conclude in Section 8.

2. BACKGROUND / RELATED WORK
Network design has many dimensions, but history has shown that
extensibility to meet unanticipated application needs is extremely
important. Telephony achieved extensibility by refining services
offered using programmable switches [7], but premises equipment
evolved more slowly.

The architecture of the Internet [8, 9] is based on both (1) an
elegant interoperability model based on a packet-switching over-
lay using disparate subnets, and (2) well-chosen “rules of thumb”
such as pushing the primary locus of evolution to the endpoints
(hosts) [23]. This latter point has been key to exploiting the con-
tinuing exponential improvements in computer performance due to
Moore’s Law.

ACM SIGCOMM Computer Communication Review 81 Volume 44, Number 3, July 2014



The rapid evolution of endpoint services possible with comput-
ers attached to an Internet is clear, but it is also clear that the In-
ternet model makes advanced in-network services, such as the de-
sirable capability for IP-layer multicast, more difficult to deploy.
Consequently, the Internet architecture makes it harder for the net-
work itself to evolve.

Attempts have been made to synthesize the evolvability advan-
tages of telephony’s switches and the Internet’s end-hosts, perhaps
most notably the approach of Active Networks [25] – networks
that allowed both users and providers to dynamically deploy new
services to support their applications. Interestingly, in fits and
starts [13], elements of this approach have made their way into
today’s Software-Defined Networks.

Other approaches are possible. For example, Content-Centric
Networking (CCN) [15] posits that the Internet architecture should
evolve to focus on content, and routes named units of content
rather than packets. In addition to the work originated by Jacobson,
some additional proposals for Future Internets based on CCN have
emerged. The eXtensible Internet Architecture (XIA) [2] project is
targeted at a content-centric architecture, but also at architectural
extensibility. Named Data Networking [26] almost exactly follows
Jacobson’s proposal.

A different approach, more in line with that of NEBULA’s
choice of one particular future, is MobilityFirst [24], which posits
a future Internet driven by billions of mobile devices such as
smartphones.

3. TARGETING THE CLOUD
The ubiquity of the Internet has given rise to a new form of comput-
ing, cloud computing [4], where services are made available using
networked access to one or more large data centers with shared
computing and storage resources – in effect, a distributed form of
the 1960s “computing utility” [12] vision. The economic advan-
tages of sharing resources are clear, and additional benefits accrue
from the computational and storage resources available. Decision-
making, for instance, can be improved with access to archives of
user, historical, and logistical data. Global coordination and fore-
casting or planning are often much more effective than distributed
coordination. Today, cloud computing services are increasingly
the coordination point among always-on mobile devices, such as
tablets and smartphones.

For all of these reasons, we believe that cloud computing will
play a central role in the Internet of the future. The requirements
of cloud-centric services have several implications for a future In-
ternet and the connection properties it provides to end hosts, dis-
tributed sites, and data centers:

1. If cloud-based storage, computation, and control/coordina-
tion are to replace the local storage and computation facilities
we have today, access to the cloud must be highly depend-
able to avoid a loss of availability or integrity, or to avoid
fluctuations in timing.

2. Mission-critical data and infrastructure hosted on the cloud
means the network must be secure to prevent data and control
from being corrupted or falling into the wrong hands.

3. The cloud is still in its infancy, and new applications continue
to be invented. The network must be sufficiently flexible and
extensible to provide connections meeting their needs.

The four properties in italics are thus essential for a future Internet
architecture.

Wireless/
Mobile

Reliable
Trustworthy

Data
Center

Wired/
Fibered

NVENT
NDP Path

Access
Network

Trustworthy
Core Network

(Ncore)
Data
Center

Transit Network

Access
NetworkNVENT

NDP Paths

Transit Network

Figure 1: Architectural overview of NEBULA

4. NEBULA OVERVIEW
The NEBULA Future Internet Architecture project [3, 19] has been
investigating a new Internet architecture that supports cloud com-
puting [10] by providing the properties discussed at the end of Sec-
tion 3.

Figure 1 shows the high-level architecture of NEBULA.
NEBULA consists of three tiers: the network core (NCore) that
connects data centers to each other, the NEBULA data plane
(NDP) that connects the data centers to the access (edge) networks,
and the NEBULA Virtual and Extensible Networking Techniques
(NVENT) that offers users a dynamic and flexible spectrum of
connectivity choices — including, for instance, paths with HIPAA
assurances that can be used for protected health information, or
high-reliability paths.
NEBULA Core Architecture (NCore): NCore is based on a
model [1] of high-performance core routers, as well as richer
interconnection topologies for both data center attachment and
NCore router interconnection [16]. It uses ideas from distributed
systems fault tolerance to achieve high reliability. Research has
resulted in new, ultra-reliable router architectures [1, 11], as well
as interconnection architectures [21, 16] for data centers that can
leverage such ultra-reliable routers.
NEBULA Data Plane (NDP): NDP incorporates new data-plane
technologies for resilient access, allowing communication only
when all involved parties, such as endpoints and transit net-
works, have agreed to participate (this is desirable for reasons of
confidentiality, integrity and availability).

NDP contains as its key element a path verification mechanism
called ICING [18]. ICING ensures that, before packets are sent
over any network path, each domain along the path has (explic-
itly or through delegation) consented to the use of the path. A
domain’s consent is embodied in a cryptographic token called a
proof of consent (PoC), which the sender embeds in each packet
that she launches along the path. As the packet traverses the path,
it is incrementally marked with proofs of provenance (PoPs), which
essentially certify that the packet has indeed traveled through each
domain on the path, in the correct order.

The requirement for explicit consent is a major difference from
the current Internet architecture, and substantially improves secu-
rity: for instance, since all traffic must be explicitly authorized
and strong cryptographic mechanisms thwart spoofing, denial-of-
service attacks are much harder to carry out. ICING also enables
NEBULA to enforce a much richer set of policies—e.g., a domain
can refuse to carry traffic that has not yet traversed a firewall that is
located in another domain.
NEBULA extensible control plane (NVENT): NVENT embodies
new control-plane technologies that focus on policy specification,
policy-based path setup [6] and service naming [20].

NVENT uses declarative networking [17], based on Network
Datalog. This declarative approach lets administrators provide
high-level specifications of their routing policies, without having to

ACM SIGCOMM Computer Communication Review 82 Volume 44, Number 3, July 2014



Integration ModelIntegration Model

1

Figure 2: Integration of NEBULA Components

worry about implementation details (and getting them right). The
resulting specifications tend to be very concise: complex policies
can often be specified with just a handful of rules. This makes it
easier for administrators to update and evolve their policies over
time. Just as BGP in the current Internet, NVENT provides a set of
default paths to ensure global reachability, but it also provides an
interface to NDP, which is available to users for requesting custom
paths, e.g., for applications that require high reliability. These
custom paths are negotiated and set up on demand.

5. PUTTING NEBULA TOGETHER
Figure 2 illustrates how the three tiers work together to negotiate
a custom end-to-end path (e.g., for sensitive health data) from a
cell phone to a data center. The cell phone contacts NVENT and
requests a path to NCore. NVENT looks for a suitable path that
complies with the policies of each network, and it contacts the NDP
policy server in each network to obtain the necessary proofs of con-
sent (PoCs), which it then returns to the phone. The phone can use
the PoCs to send packets via NDP to the nearest NCore router,
which inspects the proofs of provenance (PoPs) to check that the
negotiated path has been followed, and then uses its NCore links to
forward the packets to the correct data center.

A policy server will have zero or more policies. The default pol-
icy is to drop traffic, sometimes called “deny by default”. Policies
are assumed to be dynamic (changeable) but we assume they are
changed infrequently, and thus are cacheable. In our initial archi-
tecture, we expect that users and prototype applications will want
easy to state policies, e.g., a policy indicating HIPAA compliance
would be stated as “HIPAA=yes”. A policy server’s policies can
be queried by clients or consent servers. A path is constructed from
consenting servers.

A user or application specifies policy requirements, e.g.,
NEBULAPATH=HIPAA. The application specifies a destination or
service. When this specification is received, the system checks a
cache for a cached compliant path to the destination or service. If
such a path is available, NEBULA tries to get consent to use the
path, perhaps with cached proofs of consent if obtaining consent is
expensive. If nothing is cached, or there is no consent for a cached
path, the system iterates requests for consent to consent servers.
The end result is that NEBULA will either establish and cache a
path, or will fail with an error.

Packets carry secure “markings” of consent. This might be
the cryptographic seal implied by Onion Routing in TorIP. These
“marks” are updated at “realm” (e.g., ISP) boundaries. There are
checks to see whether a packet is “permitted”.

DApplications
Policies

eclaraative n
S l

netw
o

Serval

Policies

rking

Icing
TorI P
IPv4/ P/v6

Wired &
Wireless

Figure 3: NEBULA revision of the IP “hourglass”

Figure 4: A NEBULA node from Zodiac [5]

6. ZODIAC NVENT+NDP PROTOTYPE
Figure 3 shows how the architectural elements are layered. Note
that as functionality is added “in-network”, the waist of the hour-
glass must broaden beyond the packet format and addressing re-
quired to be standardized by IP. The multiple verticals for NDP
indicate that the NEBULA project was exploring multiple visions
for NDP. In the integration and prototyping effort described next,
we have used Serval [20] and Declarative Networking [17] to con-
stitute NVENT, and ICING [18] as a choice for NDP.

We have built a preliminary prototype of an integrated NEBULA
control plane and NEBULA data plane called Zodiac [5] that com-
bines elements of NVENT and NDP, thus integrating several ele-
ments of Figure 3. In the following, we provide a brief description
of this prototype.

6.1 Overview
Figure 4 illustrates the internal structure of a network node in our
prototype design. Not unlike a router in the current Internet, the
node has a “data plane” and a “control plane”: the former consists
of the NDP path verification mechanism, which is based on ICING,
while the latter consists of NVENT’s routing and policy mechanism
and is based on the RapidNet [22] declarative networking engine.

Each administrative domain can install its own policies to de-
scribe what kinds of paths it permits in its network. The policies
are written in Network Datalog (NDlog), a declarative language;

ACM SIGCOMM Computer Communication Review 83 Volume 44, Number 3, July 2014



Figure 5: PoC construction in Zodiac [5]

this enables administrators to state policies very concisely, in just a
few lines of code, and it facilitates the process of writing and up-
dating the policies. In addition, our prototype design contains the
notion of a path broker; this is a special kind of node that collects
information about policies and locally available paths. Figure 5
illustrates how these components are interconnected.

During normal operation, the path brokers generate a set of de-
fault best-effort paths that provide basic connectivity, just as in the
current Internet. However, networks and end users with the appro-
priate credentials can submit queries for paths with specific proper-
ties. For instance, a hospital that is about to perform telesurgery on
a remote patient might request three redundant paths between the
hospital and the patient’s location that each have sufficient band-
width and traverse only domains that advertise compliance with
HIPAA (and are perhaps certified by an appropriate industry con-
sortium, similar in spirit to ‘privacy seal’ programs like TRUSTe’s
or BBBOnLine’s). The path broker may have to contact other path
brokers to process this query – e.g., to find paths that do not share
any interior nodes. Once a set of suitable paths is found, the path
broker contacts the domains along the path and requests the appro-
priate NDP credentials – cryptographic proofs of consent (PoC) –
which are then returned to the user that made the request.

6.2 Query processing
Figure 5 illustrates the PoC creation process in some more detail.
The process begins when the sender (shown on the left) attempts
to transmit a packet to a destination for which the user has formu-
lated a special policy. NDP detects that no PoC is available for that
destination yet, and therefore contacts NVENT (1), which issues a
query to the path broker (2). Once the path broker has identified
a candidate path (the three green nodes), it contacts the NVENT
instances along the path (3), which check compliance with their lo-
cal policies and then ask the local ICING policy server to issue a
PoC for the local segment of the path (4). These individual PoCs
are then returned to the path broker, which assembles them into an
end-to-end PoC and returns it to the NDP instance on the sender (5).
From that point on, the sender can generate cryptographic tokens
for the packets it wants to send along the path. In our prototype,
end nodes can “stripe” their traffic across multiple paths for redun-
dancy; an alternative approach would be to detect path failures and
to fail over to an alternative path. In either case, the failure of a
single path, or even a small number of paths, does not interrupt the
user’s connection.

materialize(link,infinity,infinity,keys(1:
str,2:str)).

materialize(datalink,infinity,infinity,keys
(1:str,2:str)).

materialize(routerIP,infinity,infinity,keys
(1:str,2:str)).

materialize(pendingPing,infinity,infinity,
keys(3:str)).

materialize(pathRequest,infinity,infinity,
keys(1:str,2:str)).

materialize(minPathRequest,infinity,infinity
,keys(1:str,2:str)).

materialize(hipaaPathRequest,infinity,
infinity,keys(1:str,2:str)).

materialize(localPOC,infinity,infinity,keys
(1:str,2:str,3)).

materialize(replyPOC,infinity,infinity,keys
(1:str, 2:str,3)).

materialize(replyPOCCount,infinity,infinity,
keys(1:str,2:str)).

Figure 6: NDlog Relations for Maintaining State at Routers,
from Zodiac [5] integration prototype

6.3 Network state
To illustrate how policies are implemented in practice, we show
some of the relations that our prototype maintains in Figure 6. The
link table stores the topology of the network, as well as the at-
tributes of the available links. (Like all the other tables, this table is
not stored anywhere in its entirety; each node stores the entries that
pertain to its local links.) In our prototype, an entry in the link
table is of the form (A,B, c, d, h), where A and B are NEBULA
nodes, c is the capacity of the link, d is the propagation delay, and
h indicates HIPAA compliance; other properties would not be dif-
ficult to add. datalink is a similar table that describes the con-
nections to each node’s path broker(s). routerIP is an artifact of
our prototype, which is implemented as an overlay over an existing
IP network; it maps our internal node identifiers to IP addresses.
pendingPing is used by a simple link failure detection mecha-
nism.
pathRequest, minPathRequest, and hipaaPath-

Request store three types of path queries that can be issued in
our prototype. Adding more query types would not be difficult,
thanks to NDlog’s flexibility; each request type should require
only a few more lines of NDlog code.
localPOC is used to store the proofs of consent (PoCs) that

the node has generated locally; replyPOC stores PoCs that have
been received from the path broker; and replyPOCCount keeps
track of the number of PoCs that have been received for a particular
query. We note that paths could fail or be withdrawn because a
network along the path no longer consents to their use; this could
be handled by submitting the path request as a continuous query,
which would enable the path broker to automatically replace failed
paths once the number of working paths becomes too low.

6.4 Interdomain paths
Figure 7 illustrates how the path broker discovers suitable interdo-
main paths in a setting with multiple path brokers. The process
works by chaining together suitable peering links, taking band-
width constraints and HIPAA requirements into account. Notably,
even this complex process can be described with just a few lines of
declarative code.

ACM SIGCOMM Computer Communication Review 84 Volume 44, Number 3, July 2014



Figure 7: NEBULA interdomain routing, from Zodiac [5] inte-
gration prototype

6.5 Status
Our implementation is based on a software-only implementation of
ICING [14] and the RapidNet declarative networking engine [22].
A clip of a demo is available at the project web site [19], showing a
video being streamed over three redundant NEBULA connections;
when faults are injected into some of the paths, the video is unaf-
fected and continues to play.

7. DISCUSSION
As might be expected of a complex project with a large team of re-
searchers, significant management effort was required to bring the
architecture to fruition. One surprising problem that created diffi-
culty for us was a lack of clarity on exactly what an “architecture”
was. For example, is an architecture defined by the design goals?
The components and the interaction of components? An abstract
description of a vision and its realization? Or something else en-
tirely? In the end, we tried to loosely follow the model of Clark [9].

As a management mechanism, and because the members of our
team brought significant research and implementation experience
to the table, we decided to loosely organize our research around the
NVENT, NCORE and NDP designs in the first year of NEBULA,
and then gradually integrate. For example, a subgroup interested
in router reliability [1, 11] focused their energies on bringing fault-
tolerance strategies from distributed systems research to the context
of core routers that comprise hundreds of line cards and processors.
Thus, even if the more radical proposals for policy enforcement did
not transition immediately, we were hopeful that our results could
influence the router vendor community.

As designs for the elements began to emerge, we realized that
postponing the integration of the architecture was a significant
strategic error. In retrospect the deepest questions were not in the
component research, interesting as it was. Rather, they were in the
integration of the components into an architecture that achieved the
NEBULA agenda of resilience for new applications — those that
would not use an Internet without novel features such as NDP’s
policy enforcement. One example is the challenge of specifying
and enforcing interrealm/interdomain policies. Other examples
include policies for path discovery in a federation (today addressed
with BGP), and the API used for application specification of
policies.

Design Goal NEBULA

Communication must con-
tinue despite loss of networks,
links or gateways

NEBULA uses multiple dy-
namically allocated paths and
reliable transport

Allow host attachment and
operation with a low level of
effort

NVENT/NDP is as easy to au-
tomate and use as DHCP/IP

Support secure communica-
tion (authentication, autho-
rization, integrity, confiden-
tiality) among trusted nodes

Mutually-suspicious NDP
nodes self-select paths ex-
hibiting cryptographic proofs
of properties required for
security

Provide a cost-effective com-
munications infrastructure

NCORE places resources
where architecturally needed,
and benefits from regulatory
and policy research

Implement network and user
policies

Policies implemented with
NDP and NVENT

The architecture must accom-
modate a variety of networks

NDP send packets using
encapsulation; NVENT ac-
commodates multiple network
types with a service-oriented
API

The architecture must permit
distributed management of its
resources

NDP path establishment satis-
fies a decentralized federation
of realms

Table 1: NEBULA architectural goals and design solutions.

There are perhaps too many of these questions for realizing a
complete integrated NEBULA architecture before the project ends.
Nonetheless, we have done some experimental work with our Zo-
diac prototype that indicates that the components can be composed
into a functioning system. This piecewise integration reinforces our
belief that a NEBULA realization is feasible, albeit one requiring
additional thought and engineering to fully instantiate.

8. CONCLUSION AND NEXT STEPS
NEBULA is a novel future Internet architecture that addresses net-
working challenges for cloud computing. Table 1 summarizes the
architectural choices made in NEBULA, following Clark’s [9] sim-
ilar summary.

NEBULA is focused on resilience, and incorporates routers
hardened with distributed systems technology, an extensible
control plane and a flexible approach to policy enforcement. These
latter two elements have been combined in the Zodiac prototype
discussed in Section 6.

We continue to work towards integrating more of the research
generated in the NEBULA project into operational software. For
example, a prototyping effort to integrate Serval and ICING has
recently been completed.

9. ACKNOWLEDGMENTS
The NEBULA project was supported by the U.S. National Science
Foundation. We also appreciate the support of Cisco Systems.

ACM SIGCOMM Computer Communication Review 85 Volume 44, Number 3, July 2014



10. REFERENCES
[1] Andrei Agapi, Ken Birman, Robert M. Broberg, Chase

Cotton, Thilo Kielmann, Martin Millnert, Rick Payne,
Robert Surton, and Robbert van Renesse. Routers for the
Cloud: Can the Internet achieve 5-nines availability? IEEE
Internet Computing, 15(5):72–77, 2011.

[2] Ashok Anand, Fahad Dogar, Dongsu Han, Boyan Li,
Hyeontaek Lim, Michel Machado, Wenfei Wu, Aditya
Akella, David Andersen, John Byers, Srinivasan Seshan, and
Peter Steenkiste. XIA: An architecture for an evolvable and
trustworthy Internet. In Proc. ACM HotNets-X, 2011.

[3] Tom Anderson, Ken Birman, Robert Broberg, Matthew
Caesar, Douglas Comer, Chase Cotton, Michael J. Freedman,
Andreas Haeberlen, Zachary G. Ives, Arvind Krishnamurthy,
William Lehr, Boon Thau Loo, David Mazières, Antonio
Nicolosi, Jonathan M. Smith, Ion Stoica, Robbert van
Renesse, Michael Walfish, Hakim Weatherspoon, and
Christopher S. Yoo. The NEBULA Future Internet
Architecture, volume 7858 of LNCS. Springer Verlag, 2013.

[4] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D.
Joseph, Randy H. Katz, Andrew Konwinski, Gunho Lee,
David A. Patterson, Ariel Rabkin, Ion Stoica, and Matei
Zaharia. Above the clouds: A Berkeley view of Cloud
computing. Technical Report UCB/EECS-2009-28, EECS,
U. C. Berkeley, Feb. 10 2009.

[5] Dhruv Arya. Zodiac: A Control Plane for Nebula. Master’s
thesis, U. Penn., Phila., PA, April 2013.

[6] Matvey Arye, Robert Kiefer, Kyle Super, Erik Nordström,
Michael J. Freedman, Eric Keller, Tom Rondeau, and
Jonathan M. Smith. Increasing network resilience through
edge diversity in NEBULA. ACM SIGMOBILE Mobile
Computing and Communications Review, 16(3), December
2012.

[7] Bell Communications Research. AIN Release 1 Service
Logic Program Framework Generic Requirements.
FA-NWT-001132.

[8] Vinton G. Cerf and Robert E. Kahn. A protocol for packet
network intercommunication. IEEE Transactions on
Communications, COM-22(5):637–648, May 1974.

[9] David D. Clark. The design philosophy of the DARPA
internet protocols. In Proc. SIGCOMM, pages 106–114,
1988 .

[10] Douglas Comer. A future Internet architecture that supports
Cloud Computing. In Proc. 6th International Conference on
Future Internet Technologies (CFI), June 2011.

[11] Douglas Comer and Salman Javed. Applying open resilient
cluster management (ORCM) to a multi-chassis core router.
In Proc. 27th International Conference on Computers and
Their Appliactions (CATA), March 2012.

[12] Robert M. Fano. The MAC system: The computer utility
approach. IEEE Spectrum, 2:56–64, Jan. 1965.

[13] Nick Feamster, Jennifer Rexford, and Ellen Zegura. The
Road to SDN. ACM Queue, 11(12):20, 2013.

[14] ICING source code.
http://www.cs.stevens.edu/~nicolosi/
projects/icing/src/icing-1.1.tar.gz.

[15] Van Jacobson, Diana K. Smetters, James D. Thornton,
Michael F. Plass, Nicholas H. Briggs, and Rebecca L.
Braynard. Networking named content. In Proc. ACM
CoNEXT, 2009.

[16] Vincent Liu, Daniel Halperin, Arvind Krishnamurthy, and
Thomas Anderson. F10: A fault-tolerant engineered
network. In Proc. NSDI, April 2013.

[17] Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E.
Gay, Joseph M. Hellerstein, Petros Maniatis, Raghu
Ramakrishnan, Timothy Roscoe, and Ion Stoica. Declarative
networking. Communications of the ACM, 52(11):87–95,
November 2009.

[18] Jad Naous, Michael Walfish, Antonio Nicolosi, David
Mazières, Michael Miller, and Arun Seehra. Verifying and
enforcing network paths with ICING. In Proc. CoNEXT,
2011.

[19] NEBULA project web page.
http://nebula-fia.org/.

[20] Erik Nordström, David Shue, Prem Gopalan, Robert Kiefer,
Matvey Arye, Steven Y. Ko, Jennifer Rexford, and
Michael J. Freedman. Serval: An end-host stack for
service-centric networking. In Proc. NSDI, 2012.

[21] Lucian Popa, Arvind Krishnamurthy, Sylvia Ratnasamy, and
Ion Stoica. FairCloud: Sharing the network in cloud
computing. In Proc. HotNets, 2011.

[22] RapidNet project web page.
http://netdb.cis.upenn.edu/rapidnet/.

[23] Jerome H. Saltzer, David P. Reed, and David D. Clark.
End-to-end arguments in system design. ACM Transactions
on Computer Systems, 2(4):277–288, November 1984.

[24] Ivan Seskar, Kiran Nagaraja, Sam Nelson, and Dipankar
Raychaudhuri. MobilityFirst Future Internet Architecture. In
Proc. ACM Asian Internet Engineering Conference
(AINTEC), 2011.

[25] David L. Tennenhouse, Jonathan M. Smith, W. David
Sincoskie, David J. Wetherall, and Gary J. Minden. A Survey
of Active Network Research. IEEE Communications
Magazine, 35(1):80–86, January 1997.

[26] Lixia Zhang, Deborah Estrin, Jeffrey Burke, Van Jacobson,
James D. Thornton, Diana K. Smetters, Beichuan Zhang,
Gene Tsudik, kc claffy, Dmitri Krioukov, Dan Massey,
Christos Papadopoulous, Tarek Abdelzaher, Lan Wang,
Patrick Crowley, and Edmund Yeh. Named data networking
(NDN) project. http://www.named-data.net/
techreport/TR001ndn-proj.pdf, October 2010.

ACM SIGCOMM Computer Communication Review 86 Volume 44, Number 3, July 2014




