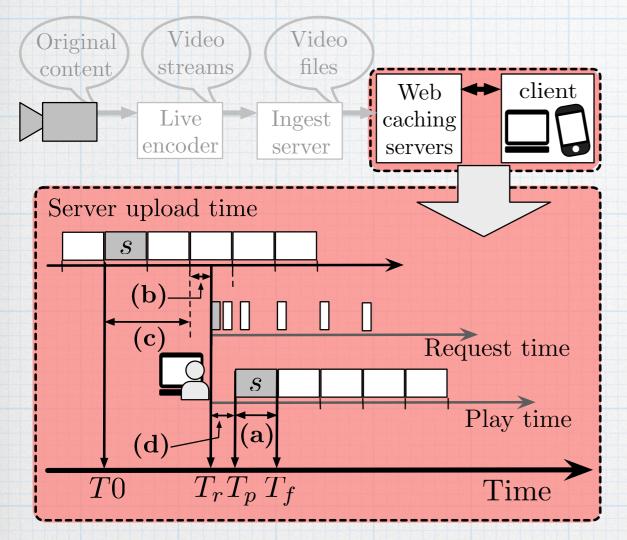
How Live is Live Streaming over HTTP? Inferring Playback Delay from Server Logs

Megumi Ninomiya, Kenjiro Cho
IIJ Research Lab.

Live streaming of "Summer Koshien"

- * Summer Koshien is the largest sporting event in Japan.
- * Live streaming service was provided for all of games with HDS/HLS.
 - * 38 nginx servers
- * Users can watch games on PC and Smartphone browsers, and dedicated Android and iOS App.


Koshien Stadium

Period of time (days)	# Log entries (billions)	Sent data (TB)	#TCP connections (millions)	# Unique IPs (millions)	Peak Traffic
14	1.9	531.4	281.0	1.3	108Gbps

How live is live streaming?

- * For HTTP based live streaming, there is playback delay, and the length of playback delay differs depending on the viewers.
- * How much playback delay is there?
 - * We are not sure.
 - * If we want to measure it, it is expensive.
- * Developing estimation method for each player's playback delay from only Web caching server logs.
 - Length of playback delay
 - * Distribution of playback delay length
 - * What causes most impact playback delay

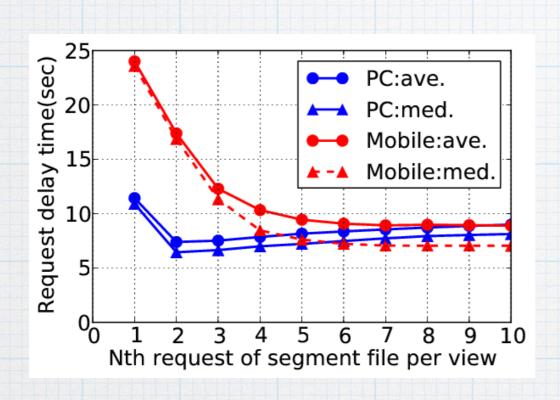
Inferential Method of Playback Delay

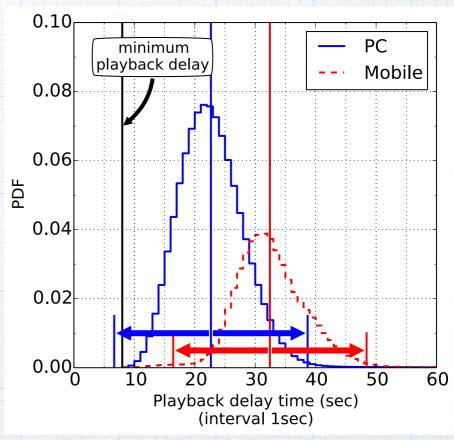
(a): segment file length = L

(b): client's arrival time = $1/2 \times L$ (average)

(c): startup buffering time = $N \times L$

(d): downloading and decoding time = w


Playback Delay = $(1.5 + N) \times L + w$


Algorithm 1 Δbuf and $\Delta playback_delay$ calculation method when playing back the Nth segment:

```
1: N \Leftarrow 1
 2: while N \leq \text{End} of request per view do
         if N \equiv 1 then
            \Delta buf \Leftarrow 0
        else
           if T_{f(prev\_s)} < T_{d(s)} then
               \Delta buf \Leftarrow 0
            else
               \Delta buf \Leftarrow T_{f(prev\_s)} - T_{d(s)}
 9:
            end if
10:
        end if
11:
         \Delta playback\_delay
                    \Leftarrow T_{d(s)} + \Delta buf + \Delta seg\_len - T0_{(s)}
13:
         N \Leftarrow N + 1
14:
15:
        prev_s \leftarrow s
         s \Leftarrow s + 1
17: end while
```

Calculate Playback delay for each view of request sequences from Server Logs

Results & Conclusions

- Segmentation and startup buffering are big factors in playback delay for HTTP based live streaming.
- * The vast majority of the playback delays are within the range of mean ±2 segment lengths.
- Playback delay as measured from server logs and delay calculated by the proposed model are almost the same.