
Beyond Jain’s Fairness Index:
Setting The Bar For the Deployment

of Congestion Control Algorithms

1

Ranysha Ware
Carnegie Mellon

University

Matthew K. Mukerjee
Nefeli

Networks

Justine Sherry
Carnegie Mellon

University

Srinivasan Seshan
Carnegie Mellon

University

I have designed a new CCA: !

How do we show ! is reasonable
to deploy in the Internet?

2

We typically use fairness to show that ! is reasonably deployable
alongside ", a legacy algorithm.

3

But everyone falls short of achieving fair outcomes.

4

But everyone falls short of achieving fair outcomes.

5

Cubic can be unfair to Reno, but “outside of TCP-friendly
region” and “this doesn’t highly impact Reno’s performance.”

But everyone falls short of achieving fair outcomes.

6

CUBIC can be unfair to Reno, but “outside of TCP-friendly
region” and “this doesn’t highly impact Reno’s performance.”

BBRv1 can be unfair to Cubic, but “we are looking at
modeling shallow buffer situations”.

But everyone falls short of achieving fair outcomes.

7

CUBIC can be unfair to Reno, but “outside of TCP-friendly
region” and “this doesn’t highly impact Reno’s performance.”

BBRv1 can be unfair to Cubic, but “we are looking at
modeling shallow buffer situations”.

PCC Vivace can be unfair to Cubic, but “as the number of
CUBIC senders increases, it achieves the best fairness among
new generation protocols.”

But everyone falls short of achieving fair outcomes.

8

CUBIC can be unfair to Reno, but “outside of TCP-friendly
region” and “this doesn’t highly impact Reno’s performance.”

Copa can be unfair to Cubic, but “is much fairer than BBR
and PCC” and “uses bandwidth Cubic does not utilize.”

BBRv1 can be unfair to Cubic, but “we are looking at
modeling shallow buffer situations”.

PCC Vivace can be unfair to Cubic, but “as the number of
CUBIC senders increases, it achieves the best fairness among
new generation protocols.”

Everyone makes excuses why
their algorithm is still
reasonable to deploy despite
unfair outcomes.

9

This talk:
We need a practical deployment
threshold: a bound on how
aggressive !, a new CCA, can
be to ", the status quo.

10

Outline:
1. What are desirable properties
of a deployment threshold?

2. We define a new deployment
threshold: harm.

11

Outline:
1. What are desirable properties
of a deployment threshold?

2. We define a new deployment
threshold: harm.

12

We identify 5 desirable properties for a deployment threshold.

13

PRACTICAL

DEMAND-
AWARE

STATUS-QUO
BIASED

MULTI-
METRIC

FUTURE-
PROOF

We identify 5 desirable properties for a deployment threshold.

14

PRACTICAL STATUS-QUO
BIASED

FUTURE-
PROOF

DEMAND-
AWARE

MULTI-
METRIC

A deployment threshold needs to be practical: should be feasible for
new CCA to meet threshold.

15

We identify 5 desirable properties for a deployment threshold.

16

PRACTICAL STATUS-QUO
BIASED

FUTURE-
PROOF

DEMAND-
AWARE

MULTI-
METRIC

17

Slow bottleneck link

18

CCA: !

Slow bottleneck link

19

Link capacity: 10 MbpsDownload speed: 5 Mbps
Latency: 5 ms

CCA: !

20

Link capacity: 10 MbpsDownload speed: 5 Mbps
Latency: 5 ms

CCA: !

CCA: "

21

Link capacity: 10 Mbps

Download speed: 5 Mbps

Download speed: 5 Mbps
Latency: 5 ms

CCA: !

CCA: "

22

Link capacity: 10 Mbps

Download speed: 5 Mbps

Download speed: 5 Mbps
Latency: 5 ms 100 ms

CCA: !

CCA: "

23

Link capacity: 10 Mbps

Download speed: 5 Mbps

Download speed: 5 Mbps

A deployment threshold needs to be multi-metric: can account for
performance metrics beyond just throughput.

CCA: !

CCA: "

Latency: 5 ms 100 ms

24

Metrics like latency cannot be
“divided fairly”.

We identify 5 desirable properties for a deployment threshold.

25

PRACTICAL STATUS-QUO
BIASED

FUTURE-
PROOF

DEMAND-
AWARE

MULTI-
METRIC

26

Link capacity: 10 MbpsDownload speed: 10 Mbps

CCA: !

27

Link capacity: 10 MbpsDownload speed: 10 Mbps

CCA: !

28

Link capacity: 10 MbpsDownload speed: 10 Mbps

CCA: !

CCA: "

29

Link capacity: 10 MbpsDownload speed: 10 Mbps 9 Mbps

CCA: !

CCA: "

Download speed: 1 Mbps

A deployment threshold needs to be status-quo biased: based only
on impact of ! on ", not vice-versa.

30

Download speed: 1 Mbps CCA: !

CCA: "

Download speed: 10 Mbps 9 Mbps Link capacity: 10 Mbps

31

Jain’s fairness index is not status-
quo biased.

We identify 5 desirable properties for a deployment threshold.

32

PRACTICAL STATUS-QUO
BIASED

FUTURE-
PROOF

DEMAND-
AWARE

MULTI-
METRIC

33

Link capacity: 10 MbpsDownload speed: 3 Mbps

CCA: !

34

Link capacity: 10 MbpsDownload speed: 3 Mbps

CCA: !

35

Link capacity: 10 MbpsDownload speed: 3 Mbps

CCA: !

CCA: "

36

Link capacity: 10 MbpsDownload speed: 3 Mbps

Download speed: 7 Mbps CCA: !

CCA: "

A deployment threshold needs to be demand-aware: do not penalize
! when " has inherently poor performance.

37

Link capacity: 10 MbpsDownload speed: 3 Mbps

Download speed: 7 Mbps CCA: !

CCA: "

38

Max-min fairness is demand aware,
equal-rate fairness is not.

We identify 5 desirable properties for a deployment threshold.

39

PRACTICAL STATUS-QUO
BIASED

FUTURE-
PROOF

DEMAND-
AWARE

MULTI-
METRIC

40

A deployment threshold needs to be future-proof: useful on a future
Internet where none of today’s current CCAs are deployed.

41

A deployment threshold needs to be future-proof: useful on a future
Internet where none of today’s current CCAs are deployed.

Link capacity: 10 MbpsDownload speed: 1 Mbps

CCA: !

42

A deployment threshold needs to be future-proof: useful on a future
Internet where none of today’s current CCAs are deployed.

Link capacity: 10 MbpsDownload speed: 5 Mbps

CCA: !

43

Does ! need to be nice to " and # or just "?

Link capacity: 10 MbpsDownload speed: 5 Mbps

CCA: !

CCA: "

44

A future-proof threshold would only require ! to be nice to "

Link capacity: 10 MbpsDownload speed: 5 Mbps

CCA: !

CCA: "

45

TCP-friendliness is not future-proof.

We identify 5 desirable properties for a deployment threshold.

46

PRACTICAL STATUS-QUO
BIASED

FUTURE-
PROOF

DEMAND-
AWARE

MULTI-
METRIC

Outline:
1. What are desirable properties
of a deployment threshold?

2. We define a new deployment
threshold: harm.

47

When showing deployability: we run experiments of ! vs. " and
measure performance.

48

49

th
ro

ug
hp

ut

When showing deployability: we run experiments of ! vs. " and
measure performance.

An
example

50

th
ro

ug
hp

ut

When showing deployability: we run experiments of ! vs. " and
measure performance.

Fairness
compares
these two bars

51

th
ro

ug
hp

ut

When showing deployability: we run experiments of ! vs. " and
measure performance.

Do not care
what happens
to "

52

th
ro

ug
hp

ut

When showing deployability: we run experiments of ! vs. " and
measure performance.

Only care
about !
performance

53

th
ro

ug
hp

ut

!

Only care about
how ! performance
changes

! alone

We want to measure the impact of " on ! performance.

Our Proposal:
Deployment threshold should be
based on how much harm ! does
to "

54

55

Link capacity: 10 MbpsDownload speed: 10 Mbps
Latency: 5 ms

CCA: !

This is ! performance alone.

! alone

56

Link capacity: 10 Mbps

Download speed: 5 Mbps

Download speed: 5 Mbps
Latency: 100 ms

CCA: !

CCA: "

Harm measures the impact of ! on " performance.

57

Harm is [0,1] where 0 is harmless and 1 is maximally harmful.

58

Harm is [0,1] where 0 is harmless and 1 is maximally harmful.

Download speed: 10 Mbps
Latency: 5 ms

! alone: (!)
!

How to Compute Harm:
! = ! solo performance (demand)

59

Harm is [0,1] where 0 is harmless and 1 is maximally harmful.

Download speed: 10 Mbps
Latency: 5 ms

! alone: (!)

Download speed: 5 Mbps
Latency: 100 ms

! vs. ": (")

!

!

How to Compute Harm:
! = ! solo performance (demand)
" = ! performance competing with "

60

Harm is [0,1] where 0 is harmless and 1 is maximally harmful.

Download speed: 10 Mbps
Latency: 5 ms

! alone: (!)

Download speed: 5 Mbps
Latency: 100 ms

! vs. ": (")

!

!

How to Compute Harm:
! = ! solo performance (demand)
" = ! performance competing with "

For “more is better” metrics (throughput):

For “less is better” metrics (latency):

! − "
!

" − !
"

61

Harm is [0,1] where 0 is harmless and 1 is maximally harmful.

Download speed: 10 Mbps
Latency: 5 ms

! alone: (!)

Download speed: 5 Mbps
Latency: 100 ms

! vs. ": (")

!

!

How to Compute Harm:
! = ! solo performance (demand)
" = ! performance competing with "

For “more is better” metrics (throughput):

For “less is better” metrics (latency):

! − "
!

" − !
"

$%%&'
$%% = .95

$%&'
$% = .50

Example:
" caused throughput harm:

" caused latency harm:

62

Harm is [0,1] where 0 is harmless and 1 is maximally harmful.

Desirable threshold properties:
☐Practical ☐Demand-Aware ☐Status-Quo Biased Multi-metric ☐Future-Proof

Download speed: 10 Mbps
Latency: 5 ms

! alone: (!)

Download speed: 5 Mbps
Latency: 100 ms

! vs. ": (")

!

!

How to Compute Harm:
! = ! solo performance (demand)
" = ! performance competing with "

For “more is better” metrics (throughput):

For “less is better” metrics (latency):

! − "
!

" − !
"

$%%&'
$%% = .95

$%&'
$% = .50

Example:
" caused throughput harm:

" caused latency harm:

63

Harm is [0,1] where 0 is harmless and 1 is maximally harmful.

Desirable threshold properties:
☐Practical ☐Demand-Aware Status-Quo Biased Multi-metric ☐Future-Proof

Download speed: 10 Mbps
Latency: 5 ms

! alone: (!)

Download speed: 5 Mbps
Latency: 100 ms

! vs. ": (")

!

!

How to Compute Harm:
! = ! solo performance (demand)
" = ! performance competing with "

For “more is better” metrics (throughput):

For “less is better” metrics (latency):

! − "
!

" − !
"

$%%&'
$%% = .95

$%&'
$% = .50

Example:
" caused throughput harm:

" caused latency harm:

64

Download speed: 10 Mbps
Latency: 5 ms

! alone: (!)

Download speed: 5 Mbps
Latency: 100 ms

! vs. ": (")

Harm is [0,1] where 0 is harmless and 1 is maximally harmful.

!

!

How to Compute Harm:
! = ! solo performance (demand)
" = ! performance competing with "

For “more is better” metrics (throughput):

For “less is better” metrics (latency):

Example:
" caused throughput harm:

" caused latency harm:

! − "
!

" − !
"

$%%&'
$%% = .95

$%&'
$% = .50

Desirable threshold properties:
☐Practical Demand-Aware Status-Quo Biased Multi-metric ☐Future-Proof

But how much harm is OK?

65

Key Insight:
A harm-based threshold:

! should not harm " much
more than " harms itself

66

67

Harm(! vs. ")

68

Harm(! vs. ")

Harm(" vs. ")
?

There are many possible thresholds based on harm (see paper!).
One possible harm-based threshold: equivalent-bounded harm.

69

Harm(! vs. ")

Harm(" vs. ")
=

One possible harm-based threshold: equivalent-bounded harm.

70

Link capacity: 10 Mbps

Download speed: 5 Mbps

Download speed: 5 Mbps
Latency: 100 ms

CCA: !

CCA: "

Harm(! vs. ")

71

Link capacity: 10 Mbps

Download speed: 5 Mbps

Download speed: 5 Mbps
Latency: 10 ms

CCA: !

CCA: !

One possible harm-based threshold: equivalent-bounded harm.

Harm(! vs. !)

72

Download speed: 10 Mbps
Latency: 5 ms

! alone:

Download speed: 5 Mbps
Latency: 100 ms

! vs. ":

!

!

How to Compute Harm:
x = ! solo performance (demand)
y = ! performance competing with "

For “more is better” metrics (throughput):

For “less is better” metrics (latency):

Example:
" caused throughput harm:

" caused latency harm:

! − #
!

− !
#

$%%&'
$%% = .95

$%&'
$% = .50

73

Download speed: 10 Mbps
Latency: 5 ms

Download speed: 5 Mbps
Latency: 100 ms

!

!

Download speed: 5 Mbps
Latency: 10 ms!

! vs. !:

How to Compute Harm:
x = ! solo performance (demand)
y = ! performance competing with "

For “more is better” metrics (throughput):

For “less is better” metrics (latency):

Example:
" caused throughput harm:

" caused latency harm:

! caused throughput harm:

! caused latency harm:

!"#$
!" = .50
!"#$
!" = .50

% − '
%

' − %
'

!""#$
!"" = .95

!"#$
!" = .50

! alone:

! vs. ":

74

Download speed: 10 Mbps
Latency: 5 ms

! alone:

Download speed: 5 Mbps
Latency: 100 ms

! vs. ":

!

!

!

! vs. !:

How to Compute Harm:
x = ! solo performance (demand)
y = ! performance competing with "

For “more is better” metrics (throughput):

For “less is better” metrics (latency):

Example:
" caused throughput harm:

" caused latency harm:

! caused throughput harm:

! caused latency harm:

!"#$
!" = .50
!"#$
!" = .50

% − '
%

' − %
'

!""#$
!"" = .95

!"#$
!" = .50

Download speed: 5 Mbps
Latency: 10 ms

75

Download speed: 10 Mbps
Latency: 5 ms

! alone:

Download speed: 5 Mbps
Latency: 100 ms

! vs. ":

!

!

!

! vs. !:

How to Compute Harm:
x = ! solo performance (demand)
y = ! performance competing with "

For “more is better” metrics (throughput):

For “less is better” metrics (latency):

Example:
" caused throughput harm:

" caused latency harm:

! caused throughput harm:

! caused latency harm:

!"#$
!" = .50

% − '
%

' − %
'

!""#$
!"" = .95

!"#$
!" = .50

!"#$
!" = .50

Download speed: 5 Mbps
Latency: 10 ms

76

Download speed: 10 Mbps
Latency: 5 ms

! alone:

Download speed: 5 Mbps
Latency: 100 ms

! vs. ":

!

!

!

! vs. !:

How to Compute Harm:
x = ! solo performance (demand)
y = ! performance competing with "

For “more is better” metrics (throughput):

For “less is better” metrics (latency):

Example:
" caused throughput harm:

" caused latency harm:

! caused throughput harm:

! caused latency harm:

!"#$
!" = .50

% − '
%

' − %
'

!""#$
!"" = .95

!"#$
!" = .50

Desirable threshold properties:
Practical Demand-Aware Status-Quo Biased Multi-metric ☐Future-Proof

!"#$
!" = .50

Download speed: 5 Mbps
Latency: 10 ms

77

Download speed: 10 Mbps
Latency: 5 ms

! alone:

Download speed: 5 Mbps
Latency: 100 ms

! vs. ":

!

!

!

! vs. !:

How to Compute Harm:
x = ! solo performance (demand)
y = ! performance competing with "

For “more is better” metrics (throughput):

For “less is better” metrics (latency):

Example:
" caused throughput harm:

" caused latency harm:

! caused throughput harm:

! caused latency harm:

!"#$
!" = .50

% − '
%

' − %
'

!""#$
!"" = .95

!"#$
!" = .50

Desirable threshold properties:
Practical Demand-Aware Status-Quo Biased Multi-metric Future-Proof

!"#$
!" = .50

Download speed: 5 Mbps
Latency: 10 ms

Is equivalent-bounded harm the answer? It meets all of our criteria.

78

PRACTICAL STATUS-QUO
BIASED

FUTURE-
PROOF

Fairness and TCP-friendliness do not.

DEMAND-
AWARE

MULTI-
METRIC

Is equivalent-bounded harm the answer? But has issues.

79

PRACTICAL STATUS-QUO
BIASED

FUTURE-
PROOF

Fairness and TCP-friendliness do not.

DEMAND-
AWARE

MULTI-
METRIC

80

Link capacity: 10 MbpsDownload speed: 7 Mbps

Download speed: 3 Mbps CCA: !

CCA: !

Could ! improve this imbalance? Equivalent-bounded harm
says no.

81

Link capacity: 10 MbpsDownload speed: 7 Mbps

Download speed: 3 Mbps CCA: !

CCA: "

Other open questions:

1. Alternatives to equivalent-bounded harm?
2. Given a distribution of results, is there some ‘leeway in harm’? Should worry

about average or worst case results?
3. What are the right workloads and networks for deployability testing?
4. How widely deployed must a legacy CCA be in order to merit protection by our

threshold?
5. If we have a threshold, should it be enforced? If so, how?

82

While we haven’t settled (yet) on
the perfect threshold, here is
what we do believe…

83

Fairness is not working as a
practical threshold.

84

We need to stop making excuses
for why our new algorithms are
not meeting an unrealistic goal.

85

Reasoning about harm is the
right way forward to derive a new
threshold.

86

87

Ranysha Ware
rware@cs.cmu.edu

@ranyshware

The Bar For Deployment: Do no more harm to the status quo
than it does to itself.
Some open questions:
1. Alternative to equivalent-bounded harm?
2. Given a distribution of results, is there some ‘leeway in harm’?

Should worry about average or worst case results?
3. What are the right workloads and networks for deployability

testing?

Beyond Jain’s Fairness Index:
Setting The Bar For the Deployment

of Congestion Control Algorithms

BACKUP SLIDES

88

Every algorithm is unfair?

89

Example of unfair outcomes: Cubic is unfair to Reno.

90

Example of unfair outcomes: Cubic is unfair to Reno.

91

Example of unfair to outcomes: Cubic is unfair to Reno.

92

What is TCP-friendliness?

94

A mimicry-based threshold: If ! mimics the behavior of " then !
is deployable.

TCP-friendliness: A TCP friendly flow should react to loss the same way that TCP
Reno does such that

95

TCP-friendliness: A TCP friendly flow should react to loss the same way that TCP
Reno does such that

96

What do you mean by
status-quo?

97

There are some applications that are more popular than others.

98
Figure: Internet Video is already more than half of all Internet traffic

Throughout this talk, this is how we defined harm:

99

Harm(! vs. ")

Harm(" vs. ")
?

!

"

In the paper, we define harm also as a function of the network
conditions ! and workload ".

100

Link capacity: 10 Mbps

CCA: #

CCA: $

Harm(! vs. ", #, $)

Harm(" vs. ", #, $)

In the paper, we define harm also as a function of the network
conditions # and workload $.

101

?

