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Cyber crimes are becoming more professional and coordinated
• Skilled cyber attackers can bypass approximately all the defense systems

Anomaly Detection has been widely used in diverse network security applications
• Learning without knowledge of anomalies
• Ability to detect unforeseen threats 

Deep Learning has shown a great potential to build network security applications
• Learn better nonlinear and hierarchical features
• Capture complex and high-dimensional structures

Anomaly Detection for Network Security
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Security Applications with Deep Learning based Anomaly Detection:

Anomaly Detection in Security Applications

Network Intrusion Detection (NDSS’18 , CCS’23) Log Anomaly Detection (CCS’17, CCS’19)

Lateral Movement Detection (CCS’19, Security’23) Host-based Threat Detection (NDSS’20, S&P’23) 3
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Close World vs. Open World
• The great success of machine/deep learning methods are based on the Close-world

assumption— testing data must be similar to the training data (i.i.d. assumption) 

• However, in Open-world applications, the distribution of testing data can change over 
time in unforeseen ways 
• Concept Drift Problem
• Example in security: the evolution of malware
• Model performance aging!

Training set
ACC: 100%

Validation set
ACC: 50%

Training set Real-world data 4
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Concept Drift vs. Normality Shift
• Concept drift has been well-studied for supervised classification 

• Security: Transcend(Usenix Sec’19), CADE(Usenix Sec’21), Transcendent(S&P’22)
• Machine Learning: Out-of-distribution (OOD) detection

• Anomaly detection models are built upon purely normal data (normality) 
• Immune to the drift of malicious/abnormal behavior
• More severe impact when the distribution of normality shifts
• E.g., user behaviors and system themselves (patches, new devices)

Drifting/OOD Sample! Anomaly? OOD Sample?

Class 1 Class 2 Normality

Supervised Classification Anomaly Detection

?
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Concept Drift vs. Normality Shift

Key Insight 1 – Without ground-truth label, a normality shift and 
real anomaly is not distinguishable for anomaly detection!

• Concept drift has been well-studied for supervised classification 
• Security: Transcend(Usenix Sec’19), CADE(Usenix Sec’21), Transcendent(S&P’22)
• Machine Learning: Out-of-distribution (OOD) detection

• Anomaly detection models are built upon purely normal data (normality) 
• Immune to the drift of malicious/abnormal behavior
• More severe impact when the distribution of normality shifts
• E.g., user behaviors and system themselves (patches, new devices)
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Retraining
/Ensemble

Retraining
/Ensemble

Retraining
/Ensemble

Pipeline 1

Our ScopeUpdating 
Model

Detection

Yes

Detection
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Detection
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Updating 

Model
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Pipeline 2

Shift?

Heavy Cost
Lack of Analysis

Delay update
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Pipelines for Handling Shift

Retraining
/Ensemble

Retraining
/Ensemble

Retraining
/Ensemble

Retraining
/Ensemble

Pipeline 1

Heavy Cost
Lack of Analysis

Delay update

Key Insight 2 – We need to decide whether, when, and how shift 
occurs before adapting models to the shift!
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Intractable for high-
dimensional data!

Detecting Shift in Statistics

Original Shifted

Question: How to represent the distribution of normality? 

Distribution of 
feature-space data

1D

2D

Key Insight 3 – Distribution of normality can be represented by 
the distribution of model outputs!  
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Model Calibration for Classification
• Transform classifier scores into class membership probabilities
• E.g., given 100 predictions, each with confidence of 0.8, we expect that 80 should be 

correctly classified. 

Calibration for Anomaly Detection 
• Expected Meaning: the percentile of model outputs (also FPR if threshold is itself)
• E.g., Original: [0.7, 0.8, 0.9, 1.0], Calibrated: [0.25, 0.5, 0.75. 1.0]

Calibration Function – Isotonic Regression
• Probabilistic legality: Convert Anomaly Score into [0,1]
• Monotonicity: Without affecting detection performance
• Non-linear: Linear transformation of distribution is meaningless

Step 1 — Output Calibration
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• Hypothesis Test
• H0: Two data follow the same distribution (No drift happen)
• H1: Two data do not follow same distribution (drift happens)

• Permutation Test
• Pros: Distribution-free, support any test statistic, and suitable for small set 
• Test Statistic: KL divergence of original and shifted distribution
• P-value:

Step 2 — Shift Detection

10Ref:https://towardsdatascience.com/how-to-use-permutation-tests-bacc79f45749
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Accuracy Loss
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Step 3 — Shift Explanation

Old Distribution New Distribution Mixed Distribution

Mixed samples should 
accurately reconstruct the 

new distribution

Choose as few samples 
from the new distribution 

as possible

Expect mc or mt to be 
deterministic (either close 
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Distributional Shift 
Adaptation 

Elastic Weight 
Consolidation

Step 4 — Shift Adaptation

Old Distribution New Distribution Mixed Distribution

Evaluate the importance of 
model parameters
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OWAD Design
• We present OWAD (Open World Anomaly Detection) Framework

• Detecting, Explaining, and  Adapting to normality shift for DL-based anomaly detection.

Please refer to our paper for 
more details of OWAD!
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Log Anomaly Lateral Movement

• Kitsune [NDSS’18]
• Anoshift Benchmark [NIPS’22]
• honey pot and campus 

network traffic 

• DeepLog [CCS’17]
• BGL Dataset [DSN’07]
• BlueGene/L supercomputer 

group Logs

• GL-GV [RAID’20]
• LANL-CMSCSE Dataset
• login events from corporate 

internal network
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Network Intrusion

Evaluation

Log Anomaly Lateral Movement

• Kitsune [NDSS’18]
• Anoshift Benchmark [NIPS’22]
• honey pot and campus 

network traffic 
• 10 years
• detect once a year

• DeepLog [CCS’17]
• BGL Dataset [DSN’07]
• BlueGene/L supercomputer 

group Logs
• 7 months
• detect once a month

• GL-GV [RAID’20]
• LANL-CMSCSE Dataset
• login events from corporate 

internal network
• 58 days
• detect once a week
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Normality Shift in Security Applications

?
?
?

Normality shift in security domain is quite common and 
different for each applications (case-by-case)
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End-to-end Performance Evaluation 

• Data selection and split
• Train anomaly detection model with Training set at Time 0
• Detect shift and update model with Validation set at Time 1, 2, 3, …, N
• Evaluate the model performance with Testing set at Time 0, 1, 2, 3, …, N

• Experimental setup
• Single Adaptation: Update model at Time 1, Test mode at Time 2, 3, …
• Multiple Adaptations: Update model at Time 1, 2, 3, …, Test mode at the same time

15
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Performance of Multiple Adaptations

OWAD can achieve better results with significantly less required labels

17



Presenter — Dongqi HanAnomaly Detection in the Open World: Normality Shift Detection, Explanation, and Adaptation.

Performance of FP/FNs

18



Presenter — Dongqi HanAnomaly Detection in the Open World: Normality Shift Detection, Explanation, and Adaptation.

Performance of FP/FNs

OWAD is the only approach that can reduce both FPs and FNs
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Real-world Deployment 

• Background
• SCADA in State Grid Shanghai Electric Power Company
• Security Monitoring System (device logs and events)
• LSTM-based Log Anomaly Detection 
• Performance degradation in long-term deployment
• Data:  >10M logs from 20 devices in 5 months (2022)

Ref:https://www.sciencedirect.com/science/article/abs/pii/B9
780128053430000188

Security Monitoring System

Log Collection
& Parse 

Anomaly
Detection

OWAD
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• Background
• SCADA in State Grid Shanghai Electric Power Company
• Security Monitoring System (device logs and events)
• LSTM-based Log Anomaly Detection 
• Performance degradation in long-term deployment
• Data:  >10M logs from 20 devices in 5 months (2022)

Ref:https://www.sciencedirect.com/science/article/abs/pii/B9
780128053430000188
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• OWAD Shift Detection

01/28/2022 vs 02/20/2022
(3 weeks) 

10/19/2021 vs 02/20/2022
(18 weeks) 19



Presenter — Dongqi HanAnomaly Detection in the Open World: Normality Shift Detection, Explanation, and Adaptation.

Real-world Deployment 

• OWAD Shift Explanation
• Identify 2 key logs inducing the normality shift
• 1) network volume increases for specific devices

• 2) new service continuously launches

• Find the key reason of shift:
• FTP service error due to system update & restart (Jan. 2022)

Ref:https://www.sciencedirect.com/science/article/abs/pii/B9
780128053430000188
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Real-world Deployment 

• OWAD Shift Explanation
• Identify 2 key logs inducing the normality shift
• 1) network volume increases for specific devices

• 2) new service continuously launches

• Find the key reason of shift:
• FTP service error due to system update & restart (Jan. 2022)

Ref:https://www.sciencedirect.com/science/article/abs/pii/B9
780128053430000188
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• OWAD Shift Adaptation
• Reduce >90% False Positives 
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https://github.com/dongtsi/OWAD

Takeaways

• Normality shift is quite common and complicated in network security domains

• After calibration, model outputs can effectively to represent the normality distribution

• Labeling is inevitable for handling normality shift. 
Nevertheless, OWAD can achieve better performance with lower labels

• OWAD is shown to be able to reduce both False Positives and False Negatives
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Presenter: Dongqi Han

Anomaly Detection in the Open World: 
Normality Shift Detection, Explanation, and Adaptation

Thank you! Questions?

handq19@mails.tsinghua.edu.cn

https://github.com/dongtsi

www.dongqihan.top
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OWAD Design
• We present OWAD (Open World Anomaly Detection) Framework

• Detecting, Explaining, and  Adapting to normality shift for DL-based anomaly detection.


