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End-to-End Encrypted Messaging
Encrypted 

Messaging Service

Want to send 
encrypted messages

Alice Bob

+ Identity 
Provider

Need Each Other’s Public Keys

Username Public 
Key

1800-ali-ce PKalice

100-bob-ph PKbob
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End-to-End Encrypted Messaging
Encrypted 

Messaging Service

Alice Bob

+ Identity 
Provider

Lookup(Alice)

PK
malicious

Lookup(Bob)

PKmalicious

Server mounts 
meddler-in-the-middle

Undetected! 3



Transparent (Privacy-Preserving) Dictionaries 

Server

User

Uname PK

Alice PKalice

Bob PKbob

Identity provider holds a dictionary with 
username-PK pairs, such that

● New Users: New users may join.
● Changing state: Users “own” their 

usernames and can update PKs. 
● Privacy: Users want the server to restrict 

queries to their usernames.

Identity provider could cheat: Same 
username queried at the same time → 
diverging value. 4



More General
● Privacy-preserving centralized financial ledger: 

○ Central server trusted for privacy + ordering. 
✅

○ Not trusted for serving correct state, e.g. FTX.
✅

● Certificate transparency, tamper evident logging.
○ No privacy requirement, ❌
○ Larger computation at clients. ❌
○ Usually only for “logging” not mapping. ❌
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FTX Server

Label Value

Alice WalletAddralice

Bob WalletAddrbob



Key Transparency Security Guarantee
● Threat model: 

○ IdP holds dictionary,
○ May “cheat”: show diverging views to different parties.

● Ideal: want to prevent the IdP from cheating at all.
● Assumptions on clients: 

○ Need them to store secrets, etc.
● Security = non-equivocation: 

○ Cannot show different keys to different clients w/o getting caught. 
○ At any given time:

■ Alice thinks her key is PKAlice ⇒ the server cannot get away with 
telling Bob her key is PKBAD. 
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Model: Parties
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Identity Provider

Users

● Trusted for privacy and 
authentication.

● Want to eliminate  trust for 
serving correct public keys.

● Updates are batched and take 
effect in discrete time steps called 
epochs.

● May update their public key.  

● Lookup each other’s public keys 
if permitted e.g. not blocked.

● Check their own keys’ history up 
till the present epoch.

● Want no changes to their keys 
without their finding out.

● Their friends should receive 
matching keys for them.

Auditors

● Share some computational 
burden.

● Check global predicates.
● Audit(start_epoch, end_epoch): 

Check that the server’s state 
changes between these epochs 
are valid. E.g., the server doesn’t 
destroy records.

● Could be users, smart contracts, 
designated machines, unrelated 
third-parties, etc. 

● Should not learn data about 
particular users!



Key Transparency Components + Desiderata

Components

● Mechanism for server committing to mutating state.
● Mechanism to allow users to monitor their own keys. 
● Need some ground truth, i.e. way to share a small 

commitment. 

Also would like to be able to support 

● Billions of users.
● Users with computationally limited devices. 8



Model
Identity Provider

Username Public 
Key

User1 PKuser1

User2 PKuser2

… …

Need a way to commit 
to this:

comstate

Identity 
Provider’s 

State

Serving commitments: 
Need a way for users to 
access comstate
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Problem Breakdown
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Key Transparency

Commitment 
&

Verification 
for 

Mutating DB

Disseminating
Small

Commitments



Committing to Server State
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Committing to Server State
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Identity Provider

Username Public 
Key

User1 PKuser1

User2 PKuser2

… …

Committing to this:
comstate

Identity 
Provider’s 

State



Committing to Server State: Previous Work
● Committing to state: Solutions based on Merkle Trees or other kinds of vector 

commitments.
● Reducing user load: Reduce user computation using third-party auditors or 

SNARKs etc. 
● Users monitoring key history:

○ Append-only authenticated data structures to prevent the server from 
cheating and then erasing evidence.
■ NO STATE CHANGES EVER DELETED.

○ OR users must do linear work in server epochs to monitor their own keys…
○ OR server must generate expensive proofs.
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Committing to State: This Work
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Problem Previous Work Pitfall Our Work

State machine 
replication, storage 
layer separation.

Data structure 
for state 
commitments

Abstracted away, 
experiments used 
single machines.

Grow to ~100s of 
TB over years

Entire large data 
structures cannot 
be read locally

Storage cost 
blowup

Flexible storage 
layer API: modularly 
plugs in existing 
DBs.

Replace underlying 
data structure 
(oZKS)



Comparing Storage Costs

15● Numbers for 10M updates a day



Committing to State: This Work
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Problem Previous Work Pitfall Our Work

State machine 
replication, storage 
layer separation.

Data structure 
for state 
commitments

Users checking 
own key

Abstracted away, 
experiments used 
single machines.

Grow to ~100s of 
TB over years

● ZKP
● Always online
● Append-only 

data structures

Entire large data 
structures cannot 
be read locally

Storage cost 
blowup

● Impractical for 
server

● Impractical for 
client 

● Ever growing 
storage costs

Flexible storage 
layer API: modularly 
plugs in existing 
DBs.

Replace underlying 
data structure 
(oZKS)

Secure 
compaction: Find a 
middle ground 
between requiring 
users always online 
and totally 
append-only.



Committing to State: This Work
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Problem Previous Work Pitfall Our Work

State machine 
replication, storage 
layer separation

Abstracted away, 
experiments used 
single machines.

Entire large data 
structures cannot be 
read locally

Flexible storage layer 
API: modularly plugs 
in existing DBs.

Data structure for 
state commitments

Grow to ~100s of TB 
over years

Storage cost blowup Replace underlying 
data structure (oZKS)

Users checking own 
key

● ZKP
● Always online
● Append-only 

data structures

● Impractical for 
server

● Impractical for 
client 

● Ever growing 
storage costs

Secure compaction: 
Find a middle ground 
between requiring 
users always online 
and totally 
append-only.



Secure Compaction: Attempt 1
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Server 
Epochs

100 500 1000 200k100k …

Delete obsolete entries here

● At any given epoch, auditors check that only old enough 
entries are deleted.

● Problem: Some old data may still be relevant.



Secure Compaction: Attempt 2

1919

Server 
Epochs

100 500 1000 200k100k …

Delete obsolete entries here

Bob’s latest key:
DO NOT DELETE!

Bob | latest

PKlatest

● At any given epoch, auditors check that only old enough 
entries are deleted.

● Show that for any deleted entry, there exists some update 
superseding it.

● Problem: Leaks metadata for users!  



Secure Compaction
● Involve both individual users and auditors.
● Well-defined (and sparse) epochs for deletion-related ops.
● Provide a grace period  or checking period where values are tombstoned.
● Auditors check everything tombstoned is old enough.
● Users come online to check that only expired values for them are marked for 

deletion.
● Garbage collection after grace period is over.  
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Server 
Epochs

100 500 100k 200k…

Checking periodTombstone Epoch Deletion EpochPotentially valid for 
deletion



Committing to Server State
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Key Transparency

Commitment 
&

Verification 
for 

Mutating DB

Disseminating
Small

Commitments



Serving Commitments
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Serving Commitments
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Identity Provider

Username Public 
Key

User1 PKuser1

User2 PKuser2

… …

Need a way to commit 
to this:

comstate

Identity 
Provider’s 

State

Serving commitments: 
Need a way for users to 
access comstate



Sharing a small commitment: Gossip? 
● If users have an out-of-band communication 

mechanism, they could gossip the commitment they 
get, i.e. share their views.

● Problem for a global scale system because:
○ Might end up with partitions in the network of users, for 

example geographically.
○ Users may come online intermittently.
○ Users may not have the bandwidth (or enough battery) to 

gossip!
○ Dissemination might be too slow.
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Sharing a small commitment: Blockchains? 
● Could post the commitment in a smart contract or OP_RETURN on 

bitcoin.
● Must trust the blockchain and its code.
● Even “light” clients could be too heavyweight.
● If billions of users query, could end up flooding the network with 

queries! 
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Custom Consensus for Strong Consistency?
● Blockchain → Consensus.
● Is consensus really needed?
● Consensus pitfalls:

○ N2  communication cost
○ Delays
○ Complex to implement and analyse
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Consensus-less Strong Consistency
● Server is trusted for compiling the updates and finalizing the underlying 

database.
● Server also has infrastructure for compiling and serving messages from some 

sort of “independent witnesses”.
● Let’s use witnesses!

○ Multiple trusted hardware instances.
○ Industry consortiums.

● Witnesses store the latest commitment and check new commitment is ok. 
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Consensus-less Strong Consistency
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Witness Node 1

Witness  Node 2

Witness  Node 3

Witness  Node 4

Identity Provider

1

Notify about new 
commitment

2
Check and sign

3

Collect signatures

Communication:

● IdP ←→ Witnesses 
● IdP ←→ Users
● Witness ←//→ Witness
● Users ←//→ Witnesses  
● Clients accept if a 

threshold number of 
witnesses sign. 



Consensus-less Strong Consistency
● Consistency, validity and 

termination are guaranteed similar 
to BFT  consensus protocols. 

● No liveness but much faster!
● Can be used in addition to other 

mechanisms.
● Simple protocol, easier to 

implement and fewer bugs.
● Uses existing server infrastructure.
● Users get certified commitments 

together with proofs and query 
responses.  
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Consensus-less Strong Consistency Performance
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Thank You
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Thank you!
● Thanks to my awesome collaborators!
● Find the paper on the NDSS website! (more details in full version: 

https://eprint.iacr.org/2023/081.pdf)
● Open source implementations: linked in the paper. 
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Appendix
(useful for several FAQs)
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SEEMless Data Structure: aZKS
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Parakeet Data Structure: oZKS
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Update Time Breakdown
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Comparing Storage costs
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Storage Breakdown
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Entries for a User
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Sharing a small commitment: Blockchains? 
● Could post the commitment in a smart contract or OP_RETURN on 

bitcoin.
● Must trust the blockchain and its code.
● Even “light” clients could be too heavyweight.
● If billions of users query, could end up flooding the network with 

queries! 
● Proposed mitigation: header relay network.

○ Similar to having a few nodes serving the commitment (i.e. 
blockchain view).

○ Might as well, just have the nodes agree on and serve the 
commitment…

○ Custom blockchain? 40



Commitments for One User
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Server 
Epochs

100 500 1000 1500

Alice | 1

PK1

Alice | 2

PK2

Alice | 1 | stale

Alice | 3

PK3

Alice | 2 | stale



Commitments for One User Over Time
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Server 
Epochs

100 500 100k 200k

Alice | 1

PK1

Alice | 2

PK2

Alice | 1 | stale

Alice | 10

PK10

Alice | 9 | stale

…



(In)Valid Deletions
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Server 
Epochs

100 500 1000 200k

Alice | 1

PK1

Alice | 2

PK2

Alice | 1 | stale

Alice | 10

PK10

Alice | 9 | stale

100k …

Don’t care about obsolete 
entries here

Bob’s latest key:
DO NOT DELETE!

Bob | 10

PK10


