
Parakeet: Practical Key
Transparency for End-to-End

Encrypted Messaging

Harjasleen Malvai
(UIUC, IC3)

joint work with
Lefteris Kokoris-Kogias (IST Austria, Mysten Labs), Alberto Sonnino (Mysten

Labs), Esha Ghosh (MSR), Ercan Ozturk, Kevin Lewi, and Sean Lawlor (Meta)

1

End-to-End Encrypted Messaging
Encrypted

Messaging Service

Want to send
encrypted messages

Alice Bob

+ Identity
Provider

Need Each Other’s Public Keys

Username Public
Key

1800-ali-ce PKalice

100-bob-ph PKbob

2

1800-ali-ce 100-bob-ph

End-to-End Encrypted Messaging
Encrypted

Messaging Service

Alice Bob

+ Identity
Provider

Lookup(Alice)

PK
malicious

Lookup(Bob)

PKmalicious

Server mounts
meddler-in-the-middle

Undetected! 3

Transparent (Privacy-Preserving) Dictionaries

Server

User

Uname PK

Alice PKalice

Bob PKbob

Identity provider holds a dictionary with
username-PK pairs, such that

● New Users: New users may join.
● Changing state: Users “own” their

usernames and can update PKs.
● Privacy: Users want the server to restrict

queries to their usernames.

Identity provider could cheat: Same
username queried at the same time →
diverging value. 4

More General
● Privacy-preserving centralized financial ledger:

○ Central server trusted for privacy + ordering.
✅

○ Not trusted for serving correct state, e.g. FTX.
✅

● Certificate transparency, tamper evident logging.
○ No privacy requirement, ❌
○ Larger computation at clients. ❌
○ Usually only for “logging” not mapping. ❌

5

FTX Server

Label Value

Alice WalletAddralice

Bob WalletAddrbob

Key Transparency Security Guarantee
● Threat model:

○ IdP holds dictionary,
○ May “cheat”: show diverging views to different parties.

● Ideal: want to prevent the IdP from cheating at all.
● Assumptions on clients:

○ Need them to store secrets, etc.
● Security = non-equivocation:

○ Cannot show different keys to different clients w/o getting caught.
○ At any given time:

■ Alice thinks her key is PKAlice ⇒ the server cannot get away with
telling Bob her key is PKBAD.

6

Model: Parties

7

Identity Provider

Users

● Trusted for privacy and
authentication.

● Want to eliminate trust for
serving correct public keys.

● Updates are batched and take
effect in discrete time steps called
epochs.

● May update their public key.

● Lookup each other’s public keys
if permitted e.g. not blocked.

● Check their own keys’ history up
till the present epoch.

● Want no changes to their keys
without their finding out.

● Their friends should receive
matching keys for them.

Auditors

● Share some computational
burden.

● Check global predicates.
● Audit(start_epoch, end_epoch):

Check that the server’s state
changes between these epochs
are valid. E.g., the server doesn’t
destroy records.

● Could be users, smart contracts,
designated machines, unrelated
third-parties, etc.

● Should not learn data about
particular users!

Key Transparency Components + Desiderata

Components

● Mechanism for server committing to mutating state.
● Mechanism to allow users to monitor their own keys.
● Need some ground truth, i.e. way to share a small

commitment.

Also would like to be able to support

● Billions of users.
● Users with computationally limited devices. 8

Model
Identity Provider

Username Public
Key

User1 PKuser1

User2 PKuser2

… …

Need a way to commit
to this:

comstate

Identity
Provider’s

State

Serving commitments:
Need a way for users to
access comstate

9

Problem Breakdown

10

Key Transparency

Commitment
&

Verification
for

Mutating DB

Disseminating
Small

Commitments

Committing to Server State

11

Key Transparency

Commitment
&

Verification
for

Mutating DB

Disseminating
Small

Commitments

Committing to Server State

12

Identity Provider

Username Public
Key

User1 PKuser1

User2 PKuser2

… …

Committing to this:
comstate

Identity
Provider’s

State

Committing to Server State: Previous Work
● Committing to state: Solutions based on Merkle Trees or other kinds of vector

commitments.
● Reducing user load: Reduce user computation using third-party auditors or

SNARKs etc.
● Users monitoring key history:

○ Append-only authenticated data structures to prevent the server from
cheating and then erasing evidence.
■ NO STATE CHANGES EVER DELETED.

○ OR users must do linear work in server epochs to monitor their own keys…
○ OR server must generate expensive proofs.

13

Committing to State: This Work

14

Problem Previous Work Pitfall Our Work

State machine
replication, storage
layer separation.

Data structure
for state
commitments

Abstracted away,
experiments used
single machines.

Grow to ~100s of
TB over years

Entire large data
structures cannot
be read locally

Storage cost
blowup

Flexible storage
layer API: modularly
plugs in existing
DBs.

Replace underlying
data structure
(oZKS)

Comparing Storage Costs

15● Numbers for 10M updates a day

Committing to State: This Work

16

Problem Previous Work Pitfall Our Work

State machine
replication, storage
layer separation.

Data structure
for state
commitments

Users checking
own key

Abstracted away,
experiments used
single machines.

Grow to ~100s of
TB over years

● ZKP
● Always online
● Append-only

data structures

Entire large data
structures cannot
be read locally

Storage cost
blowup

● Impractical for
server

● Impractical for
client

● Ever growing
storage costs

Flexible storage
layer API: modularly
plugs in existing
DBs.

Replace underlying
data structure
(oZKS)

Secure
compaction: Find a
middle ground
between requiring
users always online
and totally
append-only.

Committing to State: This Work

17

Problem Previous Work Pitfall Our Work

State machine
replication, storage
layer separation

Abstracted away,
experiments used
single machines.

Entire large data
structures cannot be
read locally

Flexible storage layer
API: modularly plugs
in existing DBs.

Data structure for
state commitments

Grow to ~100s of TB
over years

Storage cost blowup Replace underlying
data structure (oZKS)

Users checking own
key

● ZKP
● Always online
● Append-only

data structures

● Impractical for
server

● Impractical for
client

● Ever growing
storage costs

Secure compaction:
Find a middle ground
between requiring
users always online
and totally
append-only.

Secure Compaction: Attempt 1

1818

Server
Epochs

100 500 1000 200k100k …

Delete obsolete entries here

● At any given epoch, auditors check that only old enough
entries are deleted.

● Problem: Some old data may still be relevant.

Secure Compaction: Attempt 2

1919

Server
Epochs

100 500 1000 200k100k …

Delete obsolete entries here

Bob’s latest key:
DO NOT DELETE!

Bob | latest

PKlatest

● At any given epoch, auditors check that only old enough
entries are deleted.

● Show that for any deleted entry, there exists some update
superseding it.

● Problem: Leaks metadata for users!

Secure Compaction
● Involve both individual users and auditors.
● Well-defined (and sparse) epochs for deletion-related ops.
● Provide a grace period or checking period where values are tombstoned.
● Auditors check everything tombstoned is old enough.
● Users come online to check that only expired values for them are marked for

deletion.
● Garbage collection after grace period is over.

20

Server
Epochs

100 500 100k 200k…

Checking periodTombstone Epoch Deletion EpochPotentially valid for
deletion

Committing to Server State

21

Key Transparency

Commitment
&

Verification
for

Mutating DB

Disseminating
Small

Commitments

Serving Commitments

22

Key Transparency

Commitment
&

Verification
for

Mutating DB

Disseminating
Small

Commitments

Serving Commitments

23

Identity Provider

Username Public
Key

User1 PKuser1

User2 PKuser2

… …

Need a way to commit
to this:

comstate

Identity
Provider’s

State

Serving commitments:
Need a way for users to
access comstate

Sharing a small commitment: Gossip?
● If users have an out-of-band communication

mechanism, they could gossip the commitment they
get, i.e. share their views.

● Problem for a global scale system because:
○ Might end up with partitions in the network of users, for

example geographically.
○ Users may come online intermittently.
○ Users may not have the bandwidth (or enough battery) to

gossip!
○ Dissemination might be too slow.

24

Sharing a small commitment: Blockchains?
● Could post the commitment in a smart contract or OP_RETURN on

bitcoin.
● Must trust the blockchain and its code.
● Even “light” clients could be too heavyweight.
● If billions of users query, could end up flooding the network with

queries!

25

Custom Consensus for Strong Consistency?
● Blockchain → Consensus.
● Is consensus really needed?
● Consensus pitfalls:

○ N2 communication cost
○ Delays
○ Complex to implement and analyse

26

Consensus-less Strong Consistency
● Server is trusted for compiling the updates and finalizing the underlying

database.
● Server also has infrastructure for compiling and serving messages from some

sort of “independent witnesses”.
● Let’s use witnesses!

○ Multiple trusted hardware instances.
○ Industry consortiums.

● Witnesses store the latest commitment and check new commitment is ok.

27

Consensus-less Strong Consistency

28

Witness Node 1

Witness Node 2

Witness Node 3

Witness Node 4

Identity Provider

1

Notify about new
commitment

2
Check and sign

3

Collect signatures

Communication:

● IdP ←→ Witnesses
● IdP ←→ Users
● Witness ←//→ Witness
● Users ←//→ Witnesses
● Clients accept if a

threshold number of
witnesses sign.

Consensus-less Strong Consistency
● Consistency, validity and

termination are guaranteed similar
to BFT consensus protocols.

● No liveness but much faster!
● Can be used in addition to other

mechanisms.
● Simple protocol, easier to

implement and fewer bugs.
● Uses existing server infrastructure.
● Users get certified commitments

together with proofs and query
responses.

29

Consensus-less Strong Consistency Performance

30

Thank You

31

Thank you!
● Thanks to my awesome collaborators!
● Find the paper on the NDSS website! (more details in full version:

https://eprint.iacr.org/2023/081.pdf)
● Open source implementations: linked in the paper.

32

https://eprint.iacr.org/2023/081.pdf

Appendix
(useful for several FAQs)

33

SEEMless Data Structure: aZKS

35

Parakeet Data Structure: oZKS

36

Update Time Breakdown

34

Comparing Storage costs

37

Storage Breakdown

38

Entries for a User

39

Sharing a small commitment: Blockchains?
● Could post the commitment in a smart contract or OP_RETURN on

bitcoin.
● Must trust the blockchain and its code.
● Even “light” clients could be too heavyweight.
● If billions of users query, could end up flooding the network with

queries!
● Proposed mitigation: header relay network.

○ Similar to having a few nodes serving the commitment (i.e.
blockchain view).

○ Might as well, just have the nodes agree on and serve the
commitment…

○ Custom blockchain? 40

Commitments for One User

41

Server
Epochs

100 500 1000 1500

Alice | 1

PK1

Alice | 2

PK2

Alice | 1 | stale

Alice | 3

PK3

Alice | 2 | stale

Commitments for One User Over Time

42

Server
Epochs

100 500 100k 200k

Alice | 1

PK1

Alice | 2

PK2

Alice | 1 | stale

Alice | 10

PK10

Alice | 9 | stale

…

(In)Valid Deletions

43

Server
Epochs

100 500 1000 200k

Alice | 1

PK1

Alice | 2

PK2

Alice | 1 | stale

Alice | 10

PK10

Alice | 9 | stale

100k …

Don’t care about obsolete
entries here

Bob’s latest key:
DO NOT DELETE!

Bob | 10

PK10

