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Orchestrating networks is a cumbersome task
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large software 
documentation

complex 
network/application 

failures

cyber-attacks 
or vulnerabilties

misunderstanding 
within the team



Orchestrating networks is a cumbersome task
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Manual configuration is 
costly, difficult, and 

susceptible to human error

Flight 
disruption

Outage

minor error



Network Synthesis Tools Help but ...
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Network Synthesizer

But employ a self-defined specification or 
language to describe the network intents

Syntax for Stratified Datalog

Generate low-level configurations from intents

network 
operator

It’s hard to learn and extend!



Can Large Language Models (LLMs) help?

output
in text, code, script,
and configuration

LLMtask 
expressed in 

human language
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Can Large Language Models (LLMs) help?

output
in text, code, script,
and configuration

LLMtask 
expressed in 

human language

what is it? huge neural networks 
trained on large corpus of text

7

how does it work? given text input, 
predict next sequence of words
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Can Large Language Models (LLMs) help?
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output
in text, code, script,
and configuration

LLMtask 
expressed in 

human language

Example of LLMs 



Can Large Language Models (LLMs) help?
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output
in text, code, script,
and configuration

LLMtask 
expressed in 

human language

“LLMs can generate coherent, 
contextually relevant text based on 
prompts.”

knowledgeable 

fast learner

creative 
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output
in text, code, script,
and configuration

LLMtask 
expressed in 

human language

“LLMs can generate coherent, 
contextually relevant text based on 
prompts.”

knowledgeable 

fast learner

creative 

Can LLMs help in network orchestration?



Can LLMs help in network orchestration?
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I want ...

configuretalk

delegate cumbersome 
tasks

LLMs
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unreliability costs

Opportunities come with challenges

Can LLMs help in network orchestration?
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unreliability costs

Opportunities come with challenges

Source: https://www.statista.com/chart/33114/estimated-cost-of-training-selected-ai-models/

Can LLMs help in network orchestration?
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unreliability costs

Opportunities come with challenges

Source: https://scale.com/guides/large-language-models#model-size-and-performance

Can LLMs help in network orchestration?
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Design a set of benchmarks (NetConfEval) to evaluate LLMs for networking

Formulate takeaways based on our benchmarking experiment

Present prototypes for LLM-based networking systems

1.

2.

3.

Assess LLMs in today’s networking tasks



We’ll focus on three tasks in orchestrating networks
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Translating high-level requirements to a formal specification format

Adapting code to new requirements

Generating low-level configurations

1.

2.

3.
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Translating high-level requirements to a formal specification format

Adapting code to new requirements

Generating low-level configurations

1.

2.

3.



Translating high-level requirements to
a formal specification format
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network 
operator

LLM

”traffic from Rome to Milan 
must traverse a firewall”

{"reachability": {

    ”rome": [”milan"]},

 "waypoint": {

    [”rome", ”milan"]: 

       [”fw ”,”fw ”]},

 "avoidance": {}

}

dictionary



Translating high-level requirements to
a formal specification format
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Generate 3200 network requirements focusing on reachability,
waypoint, and load-balancing using Config2Spec1

Pick a certain number of requirements and sliced them with 
various batch sizes

Transform them to natural language based on predefined templates

1.

2.

3.

Evaluate the efficiency of different LLMs in translation4.

[1] “Mining network specifications from network configurations”, NSDI 20 by Birkner, R., Drachsler-Cohen, D., Vanbever, L., & Vechev, M



GPT4 translates accurately requirements
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Issues with very large language models
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Problems with very large language models
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Large language models:

• 1000B parameters

• slow inferences

• resource intensive

• hard to deploy



The quest towards smaller (cheaper!) models
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Large language models:

• 1000B parameters

• slow inferences

• resource intensive

• hard to deploy

Small/Medium language models:

• 1B-100B parameters

• faster inferences

• deployable on a few GPUs
‒ sometimes even on a laptop

smaller models performHow do ?
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Sadly, smaller models perform worsesmaller models perform
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Can one specialized language models for one task?
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General-purpose models:

• trained on any text

• know everything (almost)

• but may fail in something



Can one specialized language models for one task?
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Specialized models:

• pre-trained on specific tasks, or

• fine-tuned from general-purpose

General-purpose models:

• trained on any text

• know everything (almost)

• but may fail in something

Specialized
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Specialized models perform betterLarger
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Specialized models perform betterLarger
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Can LLMs call API functions?
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June 2023 (one function call) and November 2023 (parallel function calls)



Translating high-level requirements to
a formal specification format

35

network 
operator

LLM

add_reachability(”rome”,”milan”);

add_waypoint(”rome”,”milan”,[”fw1”,”fw2”]);

function calling

”traffic from Rome to Milan 
must traverse a firewall”

{"reachability": {

    ”rome": [”milan"]},

 "waypoint": {

    [”rome", ”milan"]: 

       [”fw ”,”fw ”]},

 "avoidance": {}

}

dictionary



Which one would be best?
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+ compact
- rearranging items

- less compact
+ no re-ordering

{"reachability": {

    ”rome": [”milan"]},

 "waypoint": {

    [”rome", ”milan"]: 

       [”fw ”,”fw ”]},

 "avoidance": {}

}

dictionary

add_reachability(”rome”,”milan”);

add_waypoint(”rome”,”milan,[”fw1”,”fw2”];

function calling



Function calling
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400

GPT4 function calling

LLMs are good at 1:1 translations



We’ll focus on three tasks in orchestrating networks
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Translating high-level requirements to a formal specification format

Adapting code to new requirements

Generating low-level configurations

1.

2.

3.



Adapting code to new requirements
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Developing modern software is difficult

• fast-paced due to rapid technological changes

• higher performance, resilience, and security guarantees

Developing modern software is expensive

• hire developers with a deep understanding of numerous systems, protocols, etc.

• development process becomes time-consuming, error-prone, and cumbersome 

. Why?



Adapting code to new requirements

40

network 
operator

LLM

”Create a function that 
takes as input […] and 

produces waypoint 
paths as output”

code generation



Poor performance even for simple tasks
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What if we give feedback?
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TODO: redraw + only show gray bars

reachability waypoint shortest path load balancing
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What if we also provide some algorithmic help?
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TODO: redraw + only show gray bars

reachability waypoint shortest path load balancing

20%

40%

60%

80%

100%

GPT4

GPT4 + feedbacksu
cc

es
s 

ra
te Instructions for finding the shortest path:

1. Construct a graph from the topology;
2. Identify the unidirectional host pairs;
3. Find all possible paths for each host pair;
4. Pick the path that has the shortest length;
5. Return final routing path.



What if we also provide some algorithmic help?
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What if we also provide some algorithmic help?
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What if we provide algorithmic help without feedback?
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TODO: redraw + only show gray bars
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Does providing precise feedback always help?

48

TODO: redraw + only show gray bars

reachability waypoint shortest path load balancing

2

4

6

8

10

GPT4

GPT4 + feedback

GPT4 + instructions

GPT4 + instructions 
+ feedback

n
u

m
b

er
 o

f 
at

te
m

p
ts



Does providing precise feedback always help?

49

TODO: redraw + only show gray bars

reachability waypoint shortest path load balancing

2

4

6

8

10

GPT4

GPT4 + feedback

n
u

m
b

er
 o

f 
at

te
m

p
ts



Does providing precise feedback always help?

50

TODO: redraw + only show gray bars

reachability waypoint shortest path load balancing

2

4

6

8

10

GPT4 + instructions

GPT4 + instructions 
+ feedback

n
u

m
b

er
 o

f 
at

te
m

p
ts



Smaller models could not produce meaningful code
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We tested a few additional models:

• phy (specialized in Python)

• mistral

• codellama 7B, 13B, 34B (with 4-bit quantization)

• GPT 3.5

None of these models generated correct code

- from basic syntax errors to wrong semantic of data structures, logic, …



We’ll focus on three tasks in orchestrating networks
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Translating high-level requirements to a formal specification format

Adapting code to new requirements

Generating low-level configurations

1.

2.

3.



Generating low-level configurations
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we wrote the 
documentation ourselves



Generating low-level configurations
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No 
Documentation

0 0

5 5

0

LLMs know something already!

Successful runs 
out of 5



Generating low-level configurations
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Full 
Documentation

No 
Documentation

0

1

0

3

5

5

5
5

0

1

LLMs learn on-the-fly! But Context window matters!



Generating low-level configurations
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RAG 
(Chunk Size 9000)

Index + SectionFull 
Documentation

No 
Documentation

0
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Index + Section and RAG reduce the context size.



Generating low-level configurations

57

RAG 
(Chunk Size 9000)

Index + SectionFull 
Documentation

No 
Documentation

0

1
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5 5
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5
4

0

1

5 5

LLMs can take advantage of knowledge without fine-tuning.

5



Building LLM-based system for networks
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Split complex tasks into smaller subtasks

Support task-specific verifiers

Keep humans still in the loop

1.

2.

3.



Prototypes
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LLMs in action with network synthesizers

LLMs from intents to low-level configuration

1.

2.



LLMs in action with network synthesizers

60“Network-wide Configuration Synthesis”, CAV 2017 by Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever, Martin Vechev



LLMs in action with network synthesizers
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network operator

LLM

”Traffic classified as 
media should be routed 

from Rome to Milan 
exclusively using the 

OSPF protocol”

Does GPT 
know how to 
write SyNet 

code?
Not at all!

“Network-wide Configuration Synthesis”, CAV 2017 by Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever, Martin Vechev



LLMs in action with network synthesizers

62“Network-wide Configuration Synthesis”, CAV 2017 by Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever, Martin Vechev

network operator

LLM

”Traffic classified as 
media should be routed 

from Rome to Milan 
exclusively using the 

OSPF protocol”

Fwd(media, rome, milan, ospf)

SyNET
paper



Netbuddy: LLMs from intents to configuration
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High-Level

Policies and 

Requirements

LLM LLM LLM

Low-Level

Network

Configuration

Formal 

Specification

High-Level

Configuration

Verifier

Network-Specific 

Information

1 2 3
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Evaluated Topology

64

prototype 
video

Emulated using 

1

h1
10.1.1.2/24

s1

s2

s4

s5

s7

1

1

1

1

1

1

2

2

2

2

2

2

23

3 3

4 4

h2

10.1.7.2/24

h3
10.1.7.3/24s3 s6



From requirements to P4 code
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Topology

Physical Settings 
Port, IP, MAC…

Data Plane Program
V1Switch(…) main;

P4 Table Entries
s1: 
table_add 
check_is_ingress_border …,
table_add fec_to_label …, …
s2: 
table_add mpls_forward …, …
s4: 
table_add mpls_forward …, …
s6: 
table_add mpls_forward …, …
s7: 
table_add 
check_is_egress_border …, …

Operator 1: You have 7 switches s1, s2, 

..., s7 and 3 end hosts h1, h2 and h3. All 

the switches should be able to reach the 

end hosts. I propose routing traffic from s1
to h2 via s2 and s6

Operator 2: To achieve balanced traffic 
flow, the traffic from s1 to h3 needs to go 

though s3 and s5

Prototype

prototype 
video



Controlling the network
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Operator 1: You have 7 switches s1, s2, 

..., s7 and 3 end hosts h1, h2 and h3. All 

the switches should be able to reach the 

end hosts. I propose routing traffic from s1
to h2 via s2 and s6

1

h1
10.1.1.2/24

s1

s2

s3

s4

s5

s6

s7

1

1

1

1

1

1

2

2

2

2

2

2

23

3 3

4 4

h2

10.1.7.2/24

h3
10.1.7.3/24

1

Path from h1 to h2

Operator 2: To achieve balanced traffic 
flow, the traffic from s1 to h3 needs to go 

though s3 and s5

Path from h1 to h3

prototype 
video
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prototype 
video



More application of LLMs

68The work has been funded by the Swedish Research Council, Digital Futures, the Swedish Innovation Agency, the Leonardo super computer

Applications Related work

Network Configuration

and Management

LLM      y     iz            fig    i   ? (H       ’23)

        M   g      U i g   d          d by LLM  (H       ‘23)

Protocol Specification 

Extraction

Ex     i g              ifi   i    U i g LLM  (H       ‘23)

More Specific Tasks    LLM:  d   i g LLM  f          i g ( I  OMM ‘24)

Network Research      d  i g                          U i g LLM  (H       ‘23)

Network for LLMs  LLM ( I O   ’23), O    (O DI ’22),    x    (I ML ’23), …



Reliable LLM applications
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Reliability

Can we trust?

Test units
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Reliability

Can we trust?

vulnerability

Reliable LLM applications



Reliable LLM applications by formal verification

71

Reliability
We can trust the code, as long as 
• the verified property is correct, and 
• verification passes



Conclusions

72

• present the first benchmark for network orchestration and share 
experience

• automate common workflows with LLM-powered prototypes

The work has been funded by the Swedish Research Council, Digital Futures, the Swedish Innovation Agency, the Leonardo super computer

Opportunities: LLMs can dramatically simplify and automate complex 
network orchestration tasks.

Challenges: unreliability, cost, …

We 

Thank you!
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