

Revisiting Benchmarking Methodology for Interconnect Devices

Daniel Raumer, Sebastian Gallemüller, Florian Wohlfart, Paul Emmerich, Patrick Werneck, and Georg Carle July 16, 2016

Tun Uhranturm

Contents

Case study: benchmarking software routers

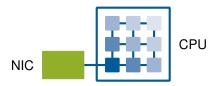
Flaws of benchmarks

Latency metrics

Latency under load

Traffic pattern

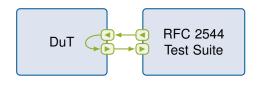
Omitted tests


Reproducibility

Conclusion

Why to revisit benchmarking state of the art?

- Numerous standards, recommendations, best practices
 - Well-known benchmarking definition RFC 2544
 - Various extensions
 - Divergence of benchmarks
- New class of devices
 - · High speed network IO frameworks
 - · Virtual switching
 - · Many core CPU architectures:

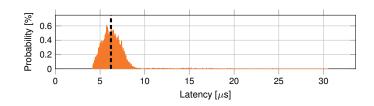

Common metrics

- Throughput: highest rate that the devices under test (DuT) can serve without loss.
- Back-to-Back frame burst size: longest duration (in frames) without loss.
- Frame loss rate: percentage of dropped frames under a given load.
- · Latency: average duration a packet stays within the DuT.

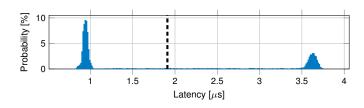
- ... extended metrics, e.g., FIB-dependent performance
- ... additional SHOULDs, rarely measured

Case study: RFC 2544 benchmarks

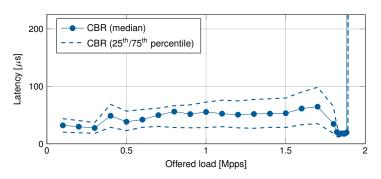
Three different DuTs


- · Linux router
- FreeBSD router
- MikroTik router

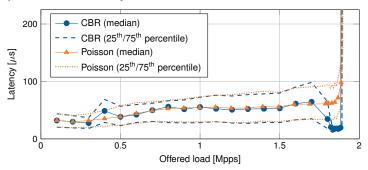
Flaws of benchmarks: selected examples


Meaningful latency measurements: case study

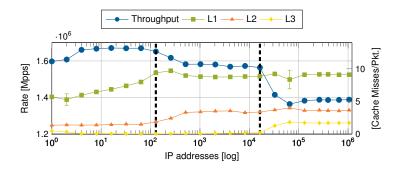
- FreeBSD, 64-byte packets
- Average does not reflect long tail distribution


Meaningful latency measurements: 2nd example

- Pica8 switch tested in [IFIP NETWORKING 16]
- Different processing paths through a device
- Bimodal distribution
- Average latency is misleading
- → Extensive reports: histograms for visualization
- → Short reports: percentiles (25th, 50th, 75th, 95th, 99th, and 99.9th)


Latency under load

- Open vSwitch (Linux NAPI & ixgbe) [IMC15]
- · Latency at maximum throughput is not worst case
- \rightarrow Measurements at different loads (10, 20, ..., 100% max. throughput)


Traffic pattern & latency

- Open vSwitch (NAPI + ixgbe) [IMC15]
- Different behavior for different traffic patterns
- → Tests with different traffic patterns
- → Poisson process to approximate real world traffic

Omitted tests

- · CPU caches affect the performance
- → Additional tests for certain device classes
- → Functionality dependent tests

Reproducibility of configurations

- Manual device configuration is error prone
- · Device configuration is hard to reproduce
- → Reproducible configuration of DuT via scripts
- → Configuration scripts executed by benchmarking tool

Conclusion

- Novel class of devices requires additional tests
- There are arguments for reconsidering best practice:
 - Average latency may be misleading
 - \rightarrow Histograms / percentiles
 - · Latency is load dependent
 - → Measure 10, 20, ..., 100% of max. throughput
 - · CBR traffic is a unrealistic test pattern
 - → Poisson process
 - · Device specific functionality
 - → Perform device specific benchmarks
 - Manual configuration is error prone
 - → Automatic configuration by benchmark tool

Novelty: RFC 2544 test suite on commodity hardware

- MoonGen [IMC15] is a fast software packet generator
- Hardware-assisted latency measurements (misusing PTP support)
- Precise software rate control and traffic patterns

- http://net.in.tum.de/pub/router-benchmarking/
- RFC 2544 benchmark reports for Linux, FreeBSD, and MikroTik
- · Early version of the MoonGen RFC 2544 module