
An	enhanced	socket	API	for	
Mul4path	TCP	

Benjamin	Hesmans	
Olivier	Bonaventure	

UCL,	Belgium	

http://inl.info.ucl.ac.be
http://www.multipath-tcp.org



Outline	

•  Mul$path	TCP	
	

•  The	proposed	socket	API		
	
	



What	is	Mul4path	TCP	?	

•  A	recently	standardised	TCP	extension	that	
allows	packets	belonging	to	one	connec4on	to	
be	sent	over	different	paths	

– Both	WiFi	and	LTE	on	smartphones	
– Both	IPv6	and	IPv4	on	dual-stack	but	single-
homed	hosts	

– Leveraging	Equal	Cost	Mul4path	in	datacenters		



Mul4path	TCP	

•  Mul4path	TCP	is	an	evolu.on	of	TCP	
	

•  Design	objec4ves	
– Support	unmodified	applica4ons	
– Work	over	today’s	networks	(IPv4	and	IPv6)	
– Work	in	all	networks	where	regular	TCP	works	



Mul4path	TCP	and	the	architecture	

Physical
Datalink
Network
Transport
Application Mul4path	TCP	

TCP1	

socket	

TCP2	 TCPn	...	

Application

A.	Ford,	C.	Raiciu,	M.	Handley,	S.	Barre,	and	J.	Iyengar,	“Architectural	guidelines	for	mul4path	TCP	
development",	RFC6182	2011.	



Low-latency	for	Siri	

2005																																																	2010																																																							2015																																																				2020												

Sept.	2013	
Siri	uses	MPTCP	

WiFi 

3G/LTE 

Voice	samples	

Voice	samples	



WiFi/LTE	Bonding	

2005																																																	2010																																																							2015																																																				2020												

July	2015	
KT	uses	MPTCP	

WiFi 

4G/LTE 

Multipath TCP Regular TCP

SOCKS



Hybrid	Access	Networks	

2005																																																	2010																																																							2015																																																				2020												

2016	
Hybrid	Access	Networks	

DSL 

4G/LTE 

Multipath TCP Regular TCP

Hybrid Access
Gateway

TCP

TCP



Sending	data	over	different	paths	?	

	
– A	Mul.path	TCP	connec.on	is	composed	of	one	or	
more	regular	TCP	subflows	that	are	combined	
	
•  Each	host	maintains	state	that	glues	the	TCP	subflows	
that	compose	a	Mul4path	TCP	connec4on	together	
	
•  Each	TCP	subflow	is	sent	over	a	single	path	and	appears	
like	a	regular	TCP	connec4on	along	this	path	
	



Mul4path	TCP		
Connec4on	establishment	

SYN+ACK,	MP_CAPABLE(KeyB)	
ACK,	MP_CAPABLE(KeyA,KeyB)	

seq=123,	DSeq=1,	"abc"	

SYN,	MP_CAPABLE(KeyA)	

TokenA=H(KeyA)	
TokenB=H(KeyB)	TokenA=H(KeyA)	

TokenB=H(KeyB)	

First	subflow	
established	



Establishment	of	the	second	subflow	

SYN	MP_JOIN[TokenB,NonceA=123]	

SYN+ACK	MP_JOIN[TokenA,NonceB=456,	
																	HMAC(123||456,"keyB||keyA")]	

ACK,MP_JOIN	[HMAC(456||123,"keyA||keyB")]	

TokenA=H(KeyA)	
TokenB=H(KeyB)	

TokenA=H(KeyA)	
TokenB=H(KeyB)	

Seq=567,	Dseq=4,	"def"	

2nd		subflow	
established	



TCP	subflows	

•  Which	subflows	can	be	associated	to	a	
Mul4path	TCP	connec4on	?	
	
– At	least	one	of	the	elements	of	the	four-tuple	
needs	to	differ	between	two	subflows	
•  Local	IP	address	
•  Remote	IP	address	
•  Local	port	
•  Remote	port	



Subflow	agility	

•  Mul4path	TCP	supports	 		
– addi4on	of	subflows	
–  removal	of	subflows	



How	to	control	these	subflows	?	

•  Current	reference	implementa4on	on	Linux	
– Standard	socket	API	to	support	exis4ng	
applica4ons	
	

•  Subflows	are	managed	by	the	path	manager	
kernel	module	
– Full-mesh	
– NDiffports	



How	to	control	these	subflows	?	

Special	AF	

Other	system	
calls	



Outline	

•  Mul4path	TCP	
	

•  The	proposed	socket	API		
	
	



Why	using	socket	op4ons	?	

•  getsockopt and	setsockopt	are	well-
known	and	extensible	

•  Rela4vely	easy	to	implement	a	new	socket	
op4on	

•  Can	pass	informa4on	from	app	to	stack	as	
memory	buffer	

•  Can	retrieve	informa4on	from	stack	to	app	as	
memory	buffer	



The	MPTCP	socket	op4ons	
•  MPTCP_GET_SUB_IDS	
–  Retrieve	the	ids	of	the	different	subflows	

•  MPTCP_GET_SUB_TUPLE	
–  Retrieve	the	endpoints	of	a	specific	subflow	

•  MPTCP_OPEN_SUB_TUPLE	
–  Create	a	new	subflow	with	specific	endpoints	

•  MPTCP_CLOSE_SUB_ID	
–  Closes	one	of	the	established	subflows	

•  MPTCP_SUB_GETSOCKOPT	and	
MPTCP_SUB_SETSOCKOPT	
– Apply	a	TCP	socket	op4on	on	a	specific	subflow	



Currently	established	subflows	

 int i;
 unsigned int optlen;
 struct mptcp_sub_ids *ids;

 optlen = 42; // must be large enough

 ids = (struct mptcp_sub_ids *) malloc(optlen);

 err=getsockopt(sockfd, IPPROTO_TCP,      
                MPTCP_GET_SUB_IDS, ids, &optlen);

 for(i = 0; i < ids->sub_count; i++){
       printf("Subflow id : %i\n",   

                ids->sub_status[i].id);
   }

Subflow	id	



What	are	the	endpoints	of	a	subflow	?	

 unsigned int optlen;
 struct mptcp_sub_tuple *sub_tuple;

 optlen = 100; // must be large enough
 sub_tuple = (struct mptcp_sub_tuple *)malloc(optlen);

 sub_tuple->id = sub_id;
 getsockopt(sockfd, IPPROTO_TCP, MPTCP_GET_SUB_TUPLE, 
            sub_tuple,&optlen);
 sin = (struct sockaddr_in*) &sub_tuple->addrs[0];

 printf("\tip src : %s src port : %hu\n", inet_ntoa(sin->sin_addr),
                                            ntohs(sin->sin_port));

 sin = (struct sockaddr_in*) &sub_tuple->addrs[1];

 printf("\tip dst : %s dst port : %hu\n", inet_ntoa(sin->sin_addr),
                                            ntohs(sin->sin_port));

Local	endpoint	

Remote	endpoint	



Crea4ng	a	subflow	
unsigned int optlen;
struct mptcp_sub_tuple *sub_tuple;
struct sockaddr_in *addr;

optlen = sizeof(struct mptcp_sub_tuple) +
            2 * sizeof(struct sockaddr_in);
sub_tuple = malloc(optlen);
sub_tuple->id = 0; sub_tuple->prio = 0;

addr = (struct sockaddr_in*) &sub_tuple->addrs[0];
addr->sin_family = AF_INET;
addr->sin_port = htons(12345);
inet_pton(AF_INET, "10.0.0.1", &addr->sin_addr);

addr = (struct sockaddr_in*) &sub_tuple->addrs[1];
addr->sin_family = AF_INET;
addr->sin_port = htons(1234);
inet_pton(AF_INET, "10.1.0.1", &addr->sin_addr);
error =  getsockopt(sockfd, IPPROTO_TCP,     
          MPTCP_OPEN_SUB_TUPLE, sub_tuple, &optlen);

Local	endpoint	

Remote	endpoint	



U4liza4on	of	the	socket	API	

3G celltower

MPTCP	enabled	applica$ons	will	be	able	to	accurately		
control	their	usage	of	the	cellular	and	WiFi	interfaces	
	

IP 1.2.3.4

IP 5.6.7.8



Conclusion	and	next	steps	
•  Mul4path	TCP	is	geong	deployed	
–  Special	applica4ons	(Siri)	and	on	middleboxes	

•  Socket	API	will	enable	applica4on	developers	to	
take	full	control	of	the	underlying	MPTCP	
–  Create/delete/query	subflows,	apply	op4ons	
– Next	steps		

•  non-blocking	I/O	and	events	with	
select,	recvmsg	and	sendmsg

•  Address	management	and	adver4sement	
•  More	op4ons	to	control	stack	(e.g.	scheduler)	

•  Coopera4on	with	applica4on	developers	


