
Implementing Real-Time Transport Services
over an Ossified Network 

Stephen McQuistin and Colin Perkins
University of Glasgow

Marwan Fayed
University of Stirling



Talk Overview
• Multimedia Applications and the Transport Layer

• Ossification and Innovation

• Transport Services

• … for Real-Time Multimedia Applications

• Realising Transport Services

• Example: TCP Hollywood

2



Multimedia Applications
• 64% of consumer Internet 

traffic in 2014 → 80% by 
2019 (Cisco VNI)

• Difficult to develop and 
standardise

• WebRTC and DASH 
standardisation work 
highlights challenges

3



Transport Layer
• Neither TCP or UDP provides all the features we require

• UDP adds minimal features beyond those of IP

• TCP adds many desired services (e.g., congestion control), 
but includes others we don’t want (e.g., reliability)

• Can build the features we need within UDP’s payload — large 
amount of effort, lacks reusability

• In principle, we could build a new protocol that provides the 
features we need

4



Ossification
• Middleboxes expect packets that look like either TCP or UDP: 

rejecting everything else is a common security policy

• New protocols (e.g., DCCP, SCTP) see little deployment on 
the public Internet

• TCP and UDP can be used as substrates for new protocols

• Need to ensure that middlebox compatibility is maintained

5



Innovation at the transport layer
• Two broad architectural approaches

• Develop a new, monolithic protocol that uses TCP or UDP as 
a substrate — e.g., QUIC

• Add a layer of indirection, and develop reusable building 
blocks — transport services

6



Transport Services
• “an end-to-end facility provided by the transport layer”

• Need to define the set of services required by applications

• Determine how these services can be realised by transport 
protocols

• Map the set of services on to an appropriate transport protocol 
(TCP, UDP, and others where available)

• Results in a set of reusable services that help application 
developers, and improve performance

7



Real-Time Multimedia Applications
• Maximum delay, depending on interactivity

• Interactive applications: low hundreds of milliseconds (for 
VoIP) — depends on human perceptibility

• Non-interactive: tens of seconds (for VoD) — depends on 
desired experience

• Services need to respect timeliness constraint, and add 
minimal latency

8



Timing and Deadlines
• Data has set time that it needs to have arrived by, otherwise it 

is skipped, and not useful

• If the transport layer doesn’t know about this deadline, useless 
data might be sent

• With the deadline, likelihood of data arriving on time can be 
estimated

• Requires network delay estimate, receive buffer size

• Fundamental service: others follow from this

9



Partial Reliability
• IP provides best-effort packet delivery, so some packets will 

be lost

• Timeliness constraint means that data is useless after its 
deadline

• Guaranteed reliability would result in useless data being sent, 
deadlines not being met

• Need partial reliability: retransmit lost packets, but only if they 
will arrive within their deadline

10



Message-oriented
• Partial reliability means that some packets may not be 

delivered

• The packets that do arrive need to be independently useful

• Implies application-level framing, with application data units 
(ADUs) being sent

• Given independent utility, and need to reduce latency, ADUs 
can be delivered in the order they arrive

• Support for multiple sub-streams

11



Dependencies
• Partial reliability means that not 

all data will arrive successfully

• Interdependencies exist within 
data

• Data shouldn’t be sent if it 
relies on a previous 
transmission that was not 
received

• Utility difficult to define for 
some applications

12

0 19

20 byte application data unit

(a) 20 byte write() at application layer

0 1 20

S 20 byte application data unit

(b) S (sub-stream identifier) prepended before COBS encoding

0 1 22 23

0 block from (b), COBS-encoded 0

(c) COBS-encoded datagram to be passed to transport layer

Figure 3: On-the-wire representation of application data units

Figure 4: MPEG-1 video frame prediction between I-frames
(red), P-frames (orange) and B-frames (yellow)

size_t send_dgram(int fd, char *buf, size_t len,

int seq);

size_t send_dgram(int fd, char *buf, size_t len,

uint32_t expiryTime,

uint16_t seq, uint16_t dep);

size_t send_dgram(int fd, char *buf, size_t len,

uint16_t seq, uint16_t dep);

size_t recv_dgram(int fd, char *buf, size_t len);

size_t recv_dgram(int fd, char *buf, size_t len,

uint8_t *substream);

void setClockrate(uint32_t clockrate);

size_t getPMTU(int sockfd);

Figure 5: uTLTCP API including dependency support

Experimental design and methodology

For the most part, the performance evaluations are carried
out using the testbed topology shown in figure 6. In order
to evaluate the performance of uTLTCP with respect to
other protocols, the protocols used at the sender and receiver
hosts are varied as shown in table 1. Where TCP is used,
the TCP_NODELAY socket option is enabled, as this is not a
contribution of the work presented here. The performance of
a uTLTCP sender and a TCP receiver is evaluated because
this configuration is more deployable than having a uTLTCP
receiver; userspace libraries can be used on the TCP receiver
to allow it to decode COBS-encoded datagrams, although
without benefiting from the decrease in latency.

Broadly, the methodology is to send a number of packets
using the listed protocols between the sender and receiver
and measure performance with respect to a set of metrics,
with the packet loss rates being varied between each eval-
uation. More specifically, 10,000 packets will be sent, with

Figure 6: Testbed topology

Label Sender Receiver
A TCP TCP
B UDP UDP
C uTLTCP TCP
D uTLTCP uTLTCP

Table 1: Protocols under evaluation

20ms between each packet; where timelines are being tested,
the clockrate is 8000Hz. The size of datagrams will alter-
nate between 550 and 650 bytes to allow for padding to be
tested. The packet loss rates being tested are 0%, 2%, 4%,
8% and 16%. Finally, evaluations will be run 10 times for
each metric and protocol combination.
The clock rate and packet sizes have been selected to im-

itate that of audio transmission. However, in such appli-
cations, packet sizes are usually constant. They vary here
only to to allow padding to be tested. The choice of clock
rate and packet size means that TCP’s flow and congestion
control algorithms may not be exercised during these evalu-
ations; this may a↵ect the throughput and goodput metrics
being measured.
The metrics that will be measured are:

Average throughput

This is the amount of data delivered to the receiving
host, divided by the time taken to deliver it. This in-
cludes protocol headers, padding, and duplicate pack-
ets, where appropriate.

Average goodput

This is the amount of data delivered to the receiving
application, divided by the time taken to deliver it.
This excludes protocol headers, padding, and retrans-
missions, where appropriate. In addition, the goodput
metric used here has a narrower definition than pre-
sented elsewhere [8]; packets that arrive after the time
that they are to be played out will not be counted.

Average latency

This is the average one-way latency between the sender
and receiver as measured at the receiver.

Average interarrival jitter

This is the average delay variation between consecutive

7

MPEG-1: I, P, and B frames



Connections & Congestion Control
• Congestion control important to protect the network and other 

applications

• Need to select algorithm appropriate to application

• Connection-oriented service is useful in some scenarios

• Enables explicit setup and teardown of in-network state (e.g., 
for NAT mappings)

13



Real-Time Transport Services

14

Transport Service Requirement

Deadlines Core

Partial reliability Core

Dependencies Core

Message-oriented Core

Sub-streams Core

Congestion controlled Core

Connection oriented Subsidiary

Keep-alive Subsidiary



Abstract API Lifecycle

15

Server Client
socket()

bind()

listen()

accept()

close()

socket()

close()

connect()

Socket creation and 
connection primitives inherited 

from Berkeley API



Abstract API Lifecycle

16

Server Client
socket()

bind()

listen()

accept()

close()

socket()

close()

connect()

set_po_delay()

Sets play-out delay, in 
milliseconds, and sends to 

server



Abstract API Lifecycle

17

Server Client
socket()

bind()

listen()

accept()

close()

socket()

close()

connect()

set_po_delay()

send_message() recv_message()

Sends message; requires 
sequence number, sub-stream, 

deadline, and dependency 
information



Abstract API Lifecycle

18

Server Client
socket()

bind()

listen()

accept()

close()

socket()

close()

connect()

set_po_delay()

send_message() recv_message()

Retrieves next message in 
arrival order, with its sub-

stream identifier



Realising transport services
• Need to support this 

combination of transport 
services

• Ossification restricts us to 
using either TCP or UDP — 
might change over time

• UDP first → fallback to TCP

• UDP not always available 
(5-10% - Google, 1-5% 
MAMI)

19

Transport Service

Deadlines

Partial reliability

Dependencies

Message-oriented

Sub-streams

Congestion controlled

Connection oriented

Keep-alive



UDP as a substrate
• Already supports the sending of datagrams/messages

• Support for partial reliability requires detecting loss, 
retransmitting if message will arrive before deadline

• Need an estimate of one-way network delay

• Sub-stream support requires small header in each message

• Connections and congestion control can be added

20



TCP as a substrate
• Messaging requires a framing mechanism, to support 

resegmenting middleboxes — e.g., COBS, as in Minion/uTCP

• Sub-stream support requires small header in each message

• Already supports connections

• Congestion control supported, but algorithm fixed: support for 
other algorithms as in DCCP

21

TCP TCPTCPTCPTCP

time

message fragmentation



Relaxing reliability in TCP
• Middleboxes ossified around TCP do 

not expect gaps in the TCP sequence 
space

• Need to “retransmit” missing TCP 
sequence numbers, without 
retransmitting payloads — inconsistent 
retransmissions

• Mapping between data and TCP 
sequence number is no longer 
constant

22

tim
e

x

...

seq: 1
seq: 2
seq: 3
seq: 4
seq: 5

ack: 2

ack: 3

ack: 3

ack: 3

ack: 3seq: 3



TCP Hollywood
• Unordered, partially 

reliable message-
oriented delivery

• Intermediary layer: 
COBS encoding to 
maintain message 
boundaries

• Kernel: unordered 
delivery of incoming 
segments

23

Hollywood socket

Socket

COBS encoding

send_message()

write()
setsockopt()

RTT 
estimate

Application

Intermediary Layer

Kernel: Transport

Kernel: Network

send queue

timing data buffer

Timing info

Hollywood receive logic

read()

fragment reassembly buffer

incomplete
messages

COBS decoding

receive_message()

Sender Receiver

receive queue

metadata queue

reassembly buffer

TCP receive logic ACKs



TCP Hollywood
• Uses inconsistent 

retransmissions to support 
partial reliability

• Evaluation between TCP 
Hollywood server and 14 
clients around the UK

• Evaluations also conducted 
by Honda et al.

• Small scale — more 
evaluations needed

24

 ISP Port
80 4001

Fixed-line
Andrews & Arnold ● ●
BT ● ●
Demon ● ●
EE ● ●
Eclipse ● ●
Sky ● ●
TalkTalk ● ●
Virgin Media ● ●

Mobile
EE ▲ ▲
O2 ▲ ▲
Three ● ●
Vodafone ▲ ●



Summary
• Services can be implemented 

on TCP and UDP

• TAPS WG formulating list of 
services by breaking down 
existing protocols

• Here, top down: start with 
application, define services 
without constraints of existing 
protocols

25

Transport Service

Deadlines

Partial reliability

Dependencies

Message-oriented

Sub-streams

Congestion controlled

Connection oriented

Keep-alive


