Start Me Up: Determining and Sharing TCP's Initial Congestion Window

<u>Safiqul Islam</u> and Michael Welzl Department of Informatics University of Oslo

neət

Motivation

- Each TCP connection maintains states in a data structure called Transport Control Block (TCB)
- Sharing TCB across parallel connections and combining their congestion controllers between two endpoints can be beneficial
 - Reduce the Flow Completion Time (FCT) of short flows: skipping slow start, immediately using large cwnd, applying priorities
- Do parallel connections follow the same route? — When they are encapsulated, e.g. VPNs; more in [1]

^[1] M. Welzl, S. Islam, K. Hiorth, and J. You. TCP in UDP. Internet-Draft draft-welzl-irtf-iccrg-tcp-in-udp-00, Internet Engineering Task Force, Mar. 2016. Work in Progress.

The Problem

- Short flows joining an aggregate can immediately increase their cwnds
 - Lead to sudden bursts –
 if not paced

The Solution

- Timer based pacing used by prior works
- Our approach:
 - Maintain the ack-clock of TCP
 - Using the ACKs of conn 1 to clock packet transmissions of connection 2 over the course of the first RTT when connection 2 joins
 - Similarly, we make use of the ACKs of connections 1 and 2 to clock packet transmissions of connection 3

FCTs of Short Flows

FCT of short flows coupled with our ack-clocked mechanism reduces the FCT