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ABSTRACT
In this paper, we propose the PVPIE Active Queue Management
(AQM) method that combines the packet scheduling and dropping
algorithms of PIE AQM and the packet marking-based resource
sharing of the Per Packet Value (PPV) concept. The algorithm cal-
culates dropping probabilities needed for keeping the queueing
delay at a predefined level using the PIE algorithm. Then instead
of applying this drop probability directly on incoming packets it
translates the dropping probability to a Congestion Threshold Va-
lue (CTV) filter and drops (or marks) all incoming packets with
Packet Value smaller than the threshold. The translation is based
on statistics collected about Packet Values of incoming packets. Our
evaluation based on simulations shows that PVPIE AQM combines
the benefits of PIE and PPV concepts, keeping a target queueing
delay and implementing policy-based resource sharing at the same
time. The motivation for the proposed algorithm is simplicity and
ease of deployment in real networks, since the schedulers of the
original PPV approach need to perform drops from the middle of
the queue. Such drops may be costly and may not be supported by
current hardware.
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1 INTRODUCTION
Quality of Service (QoS) and in particular, resource sharing are
important parts of the network research area [11], and QoS is still
listed as a key issue for 5G standardization [1]. An ideal resource
sharing technique has to be lightweight, allow rich resource sharing
policies. It has to be simple to implement and it must be able to
fulfill predefined delay requirements. In the past ten years, various
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packet marking-based resource sharing approaches have been pro-
posed from Core Stateless Fair Queueing [12] and Rainbow Fair
Queueing [2] to Per Packet Value [8], sharing the idea that the
packets are labeled at edge nodes of the network by applying pre-
defined operator policies and then the resource nodes inside the
network can solely schedule or drop packets according to the packet
labels. These approaches provide lightweight solutions to control
bandwidth sharing among flows even when per flow queuing is
not possible. Considering the PPV concept, the practical schedulers
described so far require dropping from the middle of the queue
(drop smallest Packet Value (PV) first). This might be impractical in
some network nodes, e.g., when the hardware design only supports
drops upon packet arrival and not later.

In the past decade, Active Queue Management (AQM) schemes
such as RED [4], PIE [10], CoDel [9] and PI2 [3] have been de-
veloped. PIE (Proportional Integral controller Enhanced) [10], in
particular, proposes a lightweight controller-based scheme to adjust
the packet drop probability needed for keeping the queuing delay
at a target level. Incoming packets are then dropped or ECN (Ex-
plicit Congestion Notification) marked with this probability. PIE’s
feedback loop was developed for classical TCP flows like NewReno
or CUBIC [5] and thus a flow with different congestion control
behavior might get an unfair share or can even dominate all other
flows. In addition, it is not possible to define rich resource sharing
policies among flows as the PPV framework allows, because the
drop probability is the same for all incoming packets.

In this paper, we extend the packet marking-based bandwidth
sharing control of PPV with a lightweight proactive mechanism
similar to PIE [10] that reacts to congestion situations earlier than
when buffers are filled up and ensures the bandwidth share defined
by the marking policy between flows. The proposed AQM method
called Packet Value-aware PIE (PVPIE) works in two stages: 1)
the algorithm of PIE is applied to determine the expected drop
probability needed to keep a target buffering delay; 2) the drop
probability is translated to a Packet Value threshold that is then
used to filter out incoming packets with Packet Value less than this
threshold. The goal of PVPIE AQM is to keep the queuing delay
at the target level and in parallel ensure the predefined resource
sharing policies at any congestion level.

The remaining part of the paper is organized as follows: In
Section 2 we briefly overview how the PPV concept solves the
resource sharing problem. Section 3 describes our PVPIE AQM
scheme in more detail. The proposed solution is examined and pro-
ved by simulations in Section 4. In Section 5 we summarize our
results and identify future research directions.
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2 PER PACKET VALUE-BASED RESOURCE
SHARING

Different applications may have different throughput or delay re-
quirements and thus sharing resources between flows at shared
bottlenecks in the network has an utmost importance for ensu-
ring high QoS and eventually good QoE. As mentioned previously,
a good QoS solution should support a wide range of flexible re-
source sharing policies and in parallel its implementation should
be lightweight.

The PPV concept [8] extends the idea of packet marking-based
resource sharing solutions like [2, 12] by marking each packet with
a continuous value called Packet Value (PV) representing the gain
of the network operator when the packet is delivered. Since the
Packet Value is continuous, arithmetic operations between PVs
are also possible (e.g. the gain can be divided or reduced by the
transmission cost at a radio gateway node, etc.). The network aims
at maximizing the total profit of the operator by maximizing the
total aggregate PV delivered.

The system model of PPV is split into two phases: 1) Packet
marking at network edge; 2) Packet scheduling and dropping based
on the Packet Value at resource nodes in the middle of the network.

First, packets are marked at the edge of the network by using
the resource sharing policy of the operator. Note that marking may
require flow-level, application-level or even user-specific informa-
tion to determine the policy to be applied. Packets of the same
flow are marked by Packet Values following a PV distribution re-
flecting the applied operator policy. Operator policies are described
by Throughput-Value Functions (TVFs) (marked by V (.)), that ba-
sically defines the PV distribution of a flow for any sending rate.
Specifically, for any throughput value b, the traffic up to b shall
receive a PV of V (b) or higher. Accordingly, at high congestion
only packets with high values are transmitted, more precisely pac-
kets with values above a given Congestion Threshold Value (CTV).
Note that the amount of high and low value packets determines
the resource share between various flows, resulting in that at high
congestion, flows with larger share of high Packet Values receive
more throughput. It can also be observed that the larger the space
of Packet Values is, the finer the granularity of resource sharing
policies can be reached.

Figure 1 depicts example TVFs used in our simulation scenarios
presented in Section 4. They describe conditional weighted resource
sharing between three classes: Gold, Silver and Background, repre-
senting premium, normal and low priority access to resources. The
intersection of the TVFs with horizontal lines representing different
congestion levels (i.e. CTVs) defines the desired throughput of the
classes at the given congestion level. Until Background flows reach
100 kbps, Silver flows get 4 times the throughput of Background
ones (I.). Similarly, until Silver flows reach 1 Mbps, Gold flows get
twice the throughput of Silver ones (I.). Until the throughput of the
Gold flows can reach 4 Mbps, Silver flows are limited to 1 Mbps
and Background flows to 100 kbps (II). Above that Silver flows get
10 times the throughput of Background ones and Gold flows get 4
times the throughput of Silver ones (III).

Second, resource nodes in the middle of the network schedule
and drop packets without maintaining flow-states, solely relying on
the carried Packet Values. Each such node aims at maximizing the
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Figure 1: TVF examples (log-log scale).

total amount of values transmitted over the shared bottleneck. To
this end, the authors of [8] propose a simple scheduling algorithm
that relies on a modified FIFO queue where dropping from the
middle of the buffer is also enabled. Accordingly, each time when
a packet arrives at a full queue, the algorithm first checks if its
PV is less than the minimum PV in the buffer. If this is the case,
the incoming packet is the less important and thus it is dropped,
otherwise packets with the lowest PV are dropped from the queue
to make sufficient space to enqueue the incoming packet. This
simple mechanism ensures that the node always drops the least
important packet. However, in practice dropping from the middle of
the buffer may be costly and are not supported by current chipsets.

Note that in a stationary situation the most value can be deli-
vered over a shared bottleneck by transmitting all packets above the
Congestion Threshold Value and dropping the ones below. Assu-
ming that CTV is determined accurately, transmitting any packets
below the threshold can only be done at the expanse of a packet
above, decreasing the total value delivered. As congestion increases
the CTV also rises, while if the load is decreasing, the threshold
is also reduced, enabling less important packets to be transmitted.
Note that the CTV is generally not stationary, reflecting multiple
factors from the available capacity and the amount of offered traffic
to the observed Packet Value distribution.

3 PACKET VALUE-AWARE PIE (PVPIE) AQM
The proposed Packet Value-aware PIE (PVPIE) AQM method com-
bines the resource sharing concept of PPV method and the AQM
scheme of PIE. It first applies the mechanism of the original PIE
AQM for controlling the current drop probability (p). However,
instead of dropping (or marking with an ECN flag) the incoming
packets uniformly at random with probability p, it sets the conges-
tion threshold valueV as a packet filter to both ensure the expected
drop rate and take into account that the importance of packets may
be different. Accordingly, dropping packets with high PVs is less
likely than the ones with small PVs.

A general overview of PVPIE AQM method is depicted in Fi-
gure 2. The algorithm first calculates the expected drop probabi-
lity needed for ensuring the target queueing delay (τ ), using a PI
(Proportional-Integral) controller like in the original PIE method
[10]. The controller has two parameters α for the proportional
and β for the integral term and the dropping probability at time
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Figure 2: An overview of the PVPIE AQM scheme

t is calculated from the current and the target queuing delays as
follows:

p(t) = p(t −T ) + α(Dq (t) − τ ) + β(Dq (t) − Dq (t −T )), (1)

where T denotes the time elapsed between two updates of the
probability value,Dq (t) is the actual queueing delay whileDq (t−T )
represents the queueing delay at the time of previous update. Note
that the formula is the same as in [10]. After p is determined, the
Packet Value threshold V at time t is calculated from the observed
PV distribution of incoming packets, according to the following
formula:

V (t) = eCDF−1
[t−γT ,t )(p(t)), (2)

where eCDF−1
[t−γT ,t )(.) is the percent-point function (also known as

the inverse cumulative distribution function) derived from the Pac-
ket Value distribution observed during the time window [t − γT , t)
where parameter γ ≥ 1 expresses the length of time window in
period time T . Note that [t − γT , t) is referred to as ECDF Window
in the following part of the paper. Practically, the eCDF is conti-
nuously updated during run-time, reflecting an estimated Packet
Value distribution at any time. When the number of packets re-
ceived in the time window is smaller than 1/p, the filter (V ) is set
to 0, thus all packets pass. The controller updates the filter value
periodically in every T ms. Every incoming packet with packet
value v less than the threshold V is dropped or marked with an
ECN flag. If a packet is already buffered, it cannot be dropped by the
resource node anymore and is served according to FIFO scheduling.
Note that the PI controller used in the first step for determining the
drop probability requires parameter-tuning. To find the appropriate
values of α and β , the methodology used by PIE [10] can be applied.
We also note that the adaptive algorithm of PIE for setting α and β
parameters has not been used in this paper.

4 EVALUATION
The PVPIE AQM scheme described in Section 3 has been imple-
mented and evaluated in the NS-3.25 simulator [6]. The algorithm
parameters are taken from [10]: α = 0.125, β = 1.25 and the update
period is chosen as T = 32ms . In all the examined simulation sce-
narios, we consider a single downlink bottleneck where the same
bottleneck buffer is shared by a number of flows. We also assume
that there is no uplink bottleneck. The term flow refers to a piece
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Figure 3: Scenario 1a, throughput.

of traffic to which an operator policy expressed by a specific TVF is
applied. Note that according to this flexible definition a wide range
of practical traffic aggregates are possible: e.g., a flow can refer to
all traffic of a given user; it can represent the traffic generated by
a single application; or it can be a single TCP or UDP connection.
During the simulations, both TCP and UDP traffic are applied. For
TCP, TCP CUBIC [5] implementation of NS-3 NSC [7] is used to
to generate continuous downloads. UDP flows are not congestion
controlled and their constant sending rate is set to 60% of the bottle-
neck capacity. In the scenarios, each TCP flow represents the traffic
of an individual user, consisting of 1 or 5 TCP connections/flow,
denoted by Ntcp .c . Markers apply one of the TVFs depicted on Fi-
gure 1, that is, Gold, Silver or Background representing the operator
policy applied to the flow. We implemented the hierarchical token
bucket marker described in [8], which encodes PV logarithmically
to an 8-bit field using the formula 30 · log10(V (b)). In most cases,
a moderate round-trip propagation delay (40 ms) is used and the
delay target is set accordingly (τ = 40ms). Parameters used in the
different simulator scenarios are summarized in Table 1.

Scenario 1: Varying number of Gold and Silver TCP flows.
In this scenario we increase the number of TCP flows over a

fixed bottleneck. In the beginning there are 1 Gold and 1 Silver
TCP flows and their number is doubled every 30 s. We plotted the
throughput of the flows over a 10 Mbps bottleneck on Figure 3. It is
the reproduction of Figure 4 in [8], but using the PVPIE algorithm
and the results are comparable to the reference. Figures 4 and 7
show the throughput of the flows over a 100 Mbps bottleneck for
Ntcp .c = 1 and 5 respectively. It can be seen that for all simulations
the actual bandwidth shares approach the desired shares accurately.
For the 100 Mbps, Ntcp .c = 1 case (Figure 4), the fluctuations are
due to the limited control on high speed TCP flows by dropping,
as packet drop events in this case are rare and cannot completely
enforce the desired bandwidth share. It is visible that already for
the Ntcp .c = 5 case (Figure 7) it is improved.

We detail the internals of the algorithm for the 100 Mbps cases.
Figures 5 and 8 show the Packet Value filter determined by the
PVPIE algorithm. We indicate the ideal filter value as “Desired”. We
observed that in the Ntcp .c = 5 case, the actual filter is much closer
to the ideal than in the Ntcp .c = 1 case. This is due to the smaller
effect of a single drop event on the total flow throughput. It is visible
that in the 1-1 and 2-2 flow cases the filter is rarely set, especially in
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Scenario 1a 1b 1c 2 3a 3b 4a 4b
Bottleneck [Mbps] 10 100 50 10, 50, 100, 50, 1030 10
Number of TCP flows (Gold-Silver) 1-1, 2-2, 4-4, 8-830 0-0, 1-1, 2-2, 4-430 1-1 10-10 5-0
Number of UDP flows 0 3 (Background) 0 2 (Silver)
Number of TCP connections/flow (Ntcp .c ) 1 5 1 5 1 1 5
Target Delay [ms] (τ ) 40 20
round-trip propagation delay [ms] 40 100
ECDF window (γ ) 1 ·T 1 ·T 10 ·T
Figures 3 4,5,6 7,8,9 10 11 12 13 14,15,16

Table 1: Parameters of the evaluated simulation scenarios
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Figure 6: Scenario 1b, Queue length
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Figure 10: Scenario 2, Flow throughput

the Ntcp .c = 1 case. Figures 6 and 9 show the length of the queue
compared to the 40 ms target. One can observe that in both cases
the target delay requirement is mostly satisfied and deviations can
only be seen at transient points when the number of flows has been
increased. Naturally, if Ntcp .c = 5, the overshot at transients is
higher. For example, at 90 s on Figure 9, 40 TCP connections arrive
simultaneously, instead of 8 connections on Figure 6.

Scenario 2: The effect of Background UDP flows on TCP
traffic. Figure 10 shows the effect of aggressive Background UDP
traffic on TCP flows, expressing a similar scenario to Figure 7 in [8].
There are 3 Background UDP flows of 30 Mbps during the whole
measurement. Those share the available capacity equally in the
beginning. At 30 s Gold and Silver TCP flows (Ntcp .c = 1) are
added and it can be seen how these flows get a throughput close to
their desired share even though the aggressive flows remain in the
system. The number of Gold and Silver flows is then increased to
2-2 and 4-4 at 60 and 90 s. One can observe that the actual share
is getting closer to the ideal as the number of flows increases. The
reason behind this phenomenon is that individual TCP connections
are vulnerable to packet drops. The impact of such packet drops
caused by the aggressive UDP flows can especially seen between
30 and 60 s when there are only two individual TCP connections (1
Gold and 1 Silver).

Scenario 3: Dynamic bottleneck. Gold and Silver TCP
flows. In this scenario we show the performance of the algorithm
when the bottleneck capacity is changed every 30 sec to 10, 50,
100, 50 and 10 Mbps. Figure 11 depicts 1 Gold and 1 Silver TCP
flows with Ntcp .c = 5, while Figure 12 depicts 10-10 flows with
Ntcp .c = 1. The transient periods at capacity increase are due to
time the TCP congestion control requires to reach the desired share
after the capacity change. The higher fluctuations for Gold flows
in the 10-10 flow case are due to Ntcp .c = 1. In this case a single
packet drop event have high impact on the throughput of the Gold
flows.

Scenario 4: Comparison to PIE results. Figure 13 depicts a
scenario with 5 Gold TCP and 2 Silver UDP flows (Ntcp .c = 1). The
bottleneck is 10 Mbps, the delay reference is 20 ms and the RTT
is 100 ms. This scenario is the same as Figure 4c in [10]1, however

30It changes in every 30 sec.
1 Of course, a resource sharing target is not defined in [10], while it is defined by TVFs
for PVPIE.
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Figure 12: Scenario 3b, Flow throughput

the resource sharing in [10] is not shown2. It can be seen that the
resource sharing is quite far from the Desired (0.83 Mbps for the
Silver UDP and 1.67 Mbps for the Gold TCP), but the UDP flows
still cannot overwhelm the TCP flows.

We explored a wider range of parameter settings to approach
the desired bandwidth share. We changed the eCDF window (γ )
up to 10 · T and increased Ntcp .c to 5. Figure 13 represents the
worst case in this spectrum, while Figure 14 is the best with γ =
10 · T and Ntcp .c = 5. Figure 15 depict the filter value for this
best case. The larger statistics interval and the larger number of
TCP connections/flow results in a highly stable filter value. The
filter was not reaching the ideal CTV and had high oscillations in
the worst case. We evaluated two more cases3. One is with γ = T ,
Ntcp .c = 5, the other with γ = 10 ·T , Ntcp .c = 1. The bandwidth
share and the filter value stability was better than for Scenario 4a in
both cases, but worse than for Scenario 4b. We also experimented
with γ = 10 ·T for the previous scenarios, but that resulted in worse
transient behavior. It is for future research to stabilize the filter
further while keeping the transient behavior fast enough.

Finally, we plotted the queue length for the best case on Figure
16. It can be seen that the target is well met after an initial transient,
similarly to our reference case (Figure 4c in [10]). The queue length
was similarly good even in the worst case.

2 PIE cannot differentiate between TCP and UDP flows as PVPIE, thus we believe that
the TCP throughput was close to 0, due to the very high loss rate in that case.
3 Due to space limitation we do not show detailed figures for these cases.
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5 CONCLUSIONS
We have created an AQM algorithm which can govern resource
sharing based on the combination of PIE scheduler and the Per
Packet Value concept. The algorithm calculates dropping proba-
bilities using the PIE concept. Then instead of applying this drop
probability directly on incoming packets, it translates that dropping
probability to a Congestion Threshold Value filter and drops all
incoming packets with Packet Value smaller than this threshold.
The translation is performed by approximating the Packet Value
distribution of incoming packets and selecting the Packet Value as
filter threshold at the probability determined by the PIE algorithm.
This method is more practical to implement than the one used in
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the original PPV concept paper as it decides about packet dropping
at packet arrival, instead of dropping from the middle of the queue.

We evaluated the AQM algorithm by NS-3 simulations compa-
ring the results to both PIE and PPV baseline papers. We have
shown that the algorithm can realize the desired resource share
while keeping the queuing delay reasonable.

Our future work is to further fine tune and simplify the algorithm.
As mentioned previously, parameter tuning may improve the effi-
ciency of PVPIE at both transient and stationary phases, reducing
the reaction time to changes of network conditions and providing
more stable filter threshold values in stationary periods. We also
aim at simplifying the conversion from dropping probability to
Congestion Threshold Value filter, targeting more practical Packet
Value-aware AQM algorithms with less memory and computational
footprint.
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