



# Measuring the Adoption of Route **Origin Validation and Filtering**

Andreas Reuter (andreas.reuter@fu-berlin.de)

Joint work with Randy Bush, Ethan Katz-Bassett, Italo Cunha, Thomas C. Schmidt, and Matthias Wählisch













#### The BGP Problem...





#### The BGP Problem...





















#### ROA and ROV

#### Route Origin Authorization (ROA)

# Prefix owner authorizes AS to legitimately announce the prefix



#### ROA and ROV

Route Origin Authorization (ROA) Prefix owner authorizes AS to legitimately announce the prefix

Route Origin Validation (ROV) BGP router validates received routes using ROA information



Goal: Are any ASes using ROV-based filtering policies?



Goal: Are any ASes using ROV-based filtering policies?

Assess current state of deployment Track deployment over time Create an incentive to deploy



Goal: Are any ASes using ROV-based filtering policies?

Assess current state of deployment Track deployment over time Create an incentive to deploy

Challenge: Private router configurations must be inferred.



# Route Collectors & Vantage Points





#### Measuring ROV: Approaches

Description

Property



# Measuring ROV: Approaches

#### Uncontrolled

Description

Analyzing existing BGP data and ROAs, trying to infer who is filtering

Property

Needs Existing Data Fast



# Measuring ROV: Approaches

#### Uncontrolled

Description

Analyzing existing BGP data and ROAs, trying to infer who is filtering

#### Controlled

Actively inject routes and dynamically create ROAs Analyze resulting data to infer who is filtering

Property

Needs Existing Data Fast

Needs own AS & Prefixes

Slow

Goal: Find AS that filter invalid routes



Goal: Find AS that filter invalid routes

#### BGP

Announce prefixes  $P_A$  (Anchor) and  $P_E$  (Experiment)

- ✓ Same RIR DB route object
- ✓ Same prefix length
- $\checkmark$  Announced at the same time
- $\checkmark$  Announced to same peers
- $\checkmark$  Announced from same origin AS



Freie Universität

Goal: Find AS that filter invalid routes

| BGP                                                                                                                                                                                            | RPKI                                                                                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Announce prefixes $P_A$ (Anchor) and $P_E$ (Experiment)                                                                                                                                        | Issue ROAs for<br>both prefixes                                                                                                                                                                                      |
| <ul> <li>✓ Same RIR DB route object</li> <li>✓ Same prefix length</li> <li>✓ Announced at the same time</li> <li>✓ Announced to same peers</li> <li>✓ Announced from same origin AS</li> </ul> | <ul> <li>P<sub>A</sub> announcement is always <i>valid</i>.</li> <li>Periodically change ROA for P<sub>E</sub> :</li> <li>➢ Flips announcement from <i>valid</i> to <i>invalid</i> to <i>valid</i> daily.</li> </ul> |



Initial Situation: Origin AS and vantage point AS peer directly







Observation 1: Vantage point exports no route for  $P_E$ 





Observation 1: Vantage point exports no route for P<sub>E</sub>





Observation 2: Vantage point exports alternate route for P<sub>E</sub>





Observation 2: Vantage point exports alternate route for  $P_E$ 





Situation: Origin AS and vantage point AS do not peer directly







Observation 1: Vantage point exports no route for  $P_E$ 





Observation 2: Vantage point exports different route for  $P_E$ 





#### Problem

Measuring vantage point AS that is not direct peer introduces ambiguity:

Is the vantage point AS filtering or an intermediate AS?



#### Problem

Measuring vantage point AS that is not direct peer introduces ambiguity:

Is the vantage point AS filtering or an intermediate AS?

#### Solution

Establishing direct peering with vantage point AS

or

Check if intermediate ASes have vantage points



# Controlled Experiments Results

Before October 20<sup>th</sup> 2017:

- Three AS drop invalid routes

#### October 20<sup>th</sup> 2017:

- AMS-IX Route Server changes ROV based filtering to 'opt-out'
- 50+ ASes "drop" invalid routes

Caveat: Technically, using Route Server filtering isn't "deploying ROV"!



### **ROV Deployment Monitor**

<u>Idea</u>

Give the networking community means to assess state of deployment





# **ROV Deployment Monitor**

#### https://rov.rpki.net

| Show 50 y entries |       |                                                     | Search:        |       |          |  |
|-------------------|-------|-----------------------------------------------------|----------------|-------|----------|--|
| Details           | ASN 🔶 | AS Name                                             | Confidence 🛈 🔻 | Notes | Feedback |  |
| ٢                 | 38880 | M21-AS-AP Micron21<br>Datacentre Pty Ltd, AU        | 1              | ۰     | ×        |  |
| ۲                 | 10026 | PACNET Pacnet Global<br>Ltd, JP                     | 0.957747       | ۰     | ×        |  |
| ٢                 | 42541 | FIBERBY, DK                                         | 0.957747       | •     | ×        |  |
| ٥                 | 13237 | LAMBDANET-AS<br>European Backbone of<br>AS13237, DE | 0.957747       | ۲     |          |  |
| ٥                 | 3267  | RUNNET, RU                                          | 0.957747       | •     | ×        |  |
| ٥                 | 63956 | COLO-AS-AP<br>Colocation Australia Pty<br>Ltd, AU   | 0.957747       | ۲     | ×        |  |
| ٢                 | 37100 | SEACOM-AS, MU                                       | 0.957747       | •     | ×        |  |

Implements our measurement methodology.

Table with AS that have deployed ROV.

Updated daily.



# **ROV Deployment Monitor**

#### https://rov.rpki.net

| ۲                   | 10026  | PACNET P<br>Ltd, JP | acnet Global        |    | 0.957747    |              | ٩    |                | $\succ$ | 4      |
|---------------------|--------|---------------------|---------------------|----|-------------|--------------|------|----------------|---------|--------|
| Vantage<br>Point IP |        | Days<br>Measured 🔀  | Days<br>Filtering 🕣 | С  | onfidence 0 | Last<br>Meas | ured | Last<br>Marked | De      | etails |
| 202.147.            | .61.12 | 71                  | 68                  | 0. | .957747     | 2018-<br>01  | -05- | 2018-<br>04-30 | De      | etails |
| 45.127.1            | 72.44  | 71                  | 68                  | 0. | .957747     | 2018-<br>01  | -05- | 2018-<br>04-30 | De      | etails |

Details show vantage points of AS



#### Idea: Complementary Measurements

Using RIPE Atlas, traceroute towards prefixes P<sub>A</sub> and P<sub>E</sub>



#### Idea: Complementary Measurements

Using RIPE Atlas, traceroute towards prefixes P<sub>A</sub> and P<sub>E</sub>

# Successful traceroute to $P_A$ + Unsuccessful traceroute to $P_E$ when routes are invalid



#### Idea: Complementary Measurements

Using RIPE Atlas, traceroute towards prefixes P<sub>A</sub> and P<sub>E</sub>

# Successful traceroute to $P_A$ + Unsuccessful traceroute to $P_E$ when routes are invalid

= Some AS on path is using ROV!



#### Idea: Complementary Measurements

Using RIPE Atlas, traceroute towards prefixes P<sub>A</sub> and P<sub>E</sub>

#### Successful traceroute to P<sub>A</sub>

Unsuccessful traceroute to  $P_E$  when routes are invalid

= Some AS on path is using ROV!

Note: False negatives are possible because of default routes!





• Controlled experiments are crucial to measuring adoption of ROVbased filtering policies



- Controlled experiments are crucial to measuring adoption of ROVbased filtering policies
- There are ASes that do ROV-based filtering.

Before Oct. 2017: At least 3 AS drop invalids

After Oct. 2017: 50+ AS drop invalids via Route Server@AMSIX



- Controlled experiments are crucial to measuring adoption of ROVbased filtering policies
- There are ASes that do ROV-based filtering.

Before Oct. 2017: At least 3 AS drop invalids

After Oct. 2017: 50+ AS drop invalids via Route Server@AMSIX

• IXP offering ROV at Route Servers can boost deployment



# Please peer with PEERING\* and Route Collectors! Questions?

\*https://peering.usc.edu/

ROV Deployment Monitor: <u>rov.rpki.net</u> More details about methodology: <u>ACM CCR 48(1)</u>

#### Reference





#### Towards a Rigorous Methodology for Measuring Adoption of RPKI Route Validation and Filtering

t.schmidt@haw-hamburg.de

Andreas Reuter Freie Universität Berlin andreas.reuter@fu-berlin.de

Randy Bush n IIJ Research Lab / Dragon .de Research

Italo Cunha Universidade Federal de Minas Gerais cunha@dcc.ufmg.br

Ethan Katz-Bassett Columbia University ethan@ee.columbia.edu randy@psg.com Thomas C. Schmidt HAW Hamburg

Matthias Wählisch Freie Universität Berlin m.waehlisch@fu-berlin.de

#### ABSTRACT

A proposal to improve routing security—Route Origin Authorization (ROA)—has been standardized. A ROA specifies which networks is allowed to announce a set of Internet destinations. While some networks now specify ROAs, little is known about whether other networks check routes they receive against these ROAs, a process known as Route Origin Validation (ROV). Which networks blindly accept invalid routes? Which reject them outright? Which de-preference them if alternatives exist?

Recent analysis attempts to use uncontrolled experiments to characterize ROV adoption by comparing valid routes and invalid routes [5]. However, we argue that gaining a solid understanding of ROV adoption is impossible using currently available data sets and techniques. Instead, we devise a verifiable methodology of controlled experiments for measuring ROV. Our measurements suggest that, although some ISPs are not observed using invalid routes in uncontrolled experiments, they are actually using different routes for (non-security) traffic engineering purposes, without performing ROV. We conclude with presenting three AS that do implement ROV as confirmed by the operators.

#### CCS CONCEPTS

Networks → Routing protocols; Network measurement; Security protocols; Public Internet;

#### KEYWORDS

BGP, RPKI, routing policies, Internet security

#### 1 INTRODUCTION

The Border Gateway Protocol (BGP) [17] is responsible for establishing Internet routes, yet it does not check that routes are valid. An autonomous system (AS) can hijack destinations it does not control by announcing invalid routes to them, either intentionally or unintentionally, as in the well-known accidental announcement of YouTube's address space by Pakistan Telecom [2].

Because this critical aspect of the Internet is vulnerable, there are proposals to improve routing security [7], and one the RPKI—is standardized and is in early adoption. The

ACM SIGCOMM Computer Communication Review

Resource Public Key Infrastructure (RPKI) [12] is a specialized PKI to help secure Internet interdomain routing by providing attestation objects for Internet resource holders (i.e., IP prefixes and AS numbers). The RPKI publishes Route Origin Authorization (ROA) objects, each specifying which AS is allowed to announce an IP prefix. Using ROA data, a BGP router can perform RPKI-based origin validation (ROV) verifying whether the AS originating an IP prefix announcement in BGP is authorized to do so [14] and labeling the route as valid or invalid. The validity of a route can be used as part of the router's local BGP policy decisions, e.g., filtering routes that reflect invalid announcements or preferring valid ones. While the RPKI is fairly populated with ROAs and growing [9, 15, 23, 24], adoption of ROV and filtering has been negligible, according to operator gossip. A major reason for this is the lack of economic incentives. Since a significant share of invalid routes are due to misconfiguration [23], adopting ROV and filtering can even have adverse effects such as a loss of connectivity to legitimate network destinations.

A recent paper examined RPKI and ROV adoption from multiple angles, focusing on the slow state of ROV adoption, the security implications of partial adoption, and reasons for slow adoption. The paper also identifies an attack vector that exploits loose ROAs to hijack traffic of a RPKI-secured prefix [5]. To capture the current state of limited adoption. the paper included a measurement study that claimed that most large AS had not deployed ROV, but that 9 of the 100 largest AS had. This result was based on observations of existing BGP routes from BGP route collectors, meaning that the experiments were uncontrolled. At a basic level, the approach finds an AS that originates both valid and invalid announcements, then identifies other AS that appear on paths towards the valid prefix but not on paths towards the invalid prefix. It then assumes these AS are performing ROV to filter invalid routes.

In this paper, we contribute a verifiable methodology for measuring ROV after demonstrating that the above approach to identify ROV adoption, based on passive observation of routes in uncontrolled experiments [5], has three major limitations. First, our measurements show that its characterizations of some networks change depending on which set of BGP collectors is used, inferring ROV adoption in some cases when

Volume 48 Issue 1, January 2018



# Backup



| Limited Control    | Don't know origin AS policy<br>Can't distinguish between ROV-<br>filtering and other filtering |  |  |
|--------------------|------------------------------------------------------------------------------------------------|--|--|
| Limited Visibility | Incomplete data can lead to misclassification                                                  |  |  |
| Reproducibility    | No                                                                                             |  |  |



# Controlled: Advantages

| Limited Control    | Control origin AS policy, can<br>announce own routes<br>Can distinguish ROV-filtering by<br>changing route RPKI state |
|--------------------|-----------------------------------------------------------------------------------------------------------------------|
| Limited Visibility | Less of an issue:<br>Only care about our routes                                                                       |
| Reproducibility    | Yes                                                                                                                   |















#### Goal: Measure the adoption of ROV-based filtering policies



Challenge: Private policies must be inferred from measurements