
Towards Core-Stateless Fairness on Multiple
Timescales

Szilveszter Nádas
Ericsson

Budapest, Hungary
szilveszter.nadas@ericsson.com

Gergő Gombos, Ferenc Fejes and
Sándor Laki

ELTE Eötvös Loránd University
Budapest, Hungary

ABSTRACT
Extending fairness to multiple timescales creates the right in-
centives for users and provides better QoE for short sessions,
e.g. for web page download. In this paper, we show how to
define and implement multi-timescale fairness among flows
independently of actual traffic mixes and resource capaci-
ties. The proposed method is built on the top of the Multi-
Timescale Bandwidth Profile concept and the core-stateless
resource sharing framework called Per Packet Value (PPV). It
adds two novel ideas: 1) Replacing the traditional weighted-
fairness definition of PPV by extending Throughput-Value
Functions to multiple timescales (MTS-TVF); 2) Providing an
efficient packetmarking algorithm usingMTS-TVFs to assign
values to packets. After marking the packets, the routers in
the network core can work with any prior schedulers of PPV.
Finally, our early results towards multi-timescale fairness
are demonstrated by simulations.

CCS CONCEPTS
• Networks→ Packet scheduling;

KEYWORDS
Fairness; Resource Sharing; Packet Marking; Rate Measure-
ment; Timescales; PPV

ACM Reference Format:
Szilveszter Nádas and Gergő Gombos, Ferenc Fejes and Sándor Laki.
2019. Towards Core-Stateless Fairness on Multiple Timescales. In
ANRW ’19: Applied Networking Research Workshop, July 22, 2019,
Montreal, QC, Canada. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3340301.3341124

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ANRW ’19, July 22, 2019, Montreal, QC, Canada
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6848-3/19/07. . . $15.00
https://doi.org/10.1145/3340301.3341124

1 INTRODUCTION
Resource sharing among traffic flows has remained an area
of interest in networking research. Fairness is usually inter-
preted as equal (or weighted) throughput [1] experienced
by flows. In this paper we use the term flow for a traffic
aggregate, which has an associated resource sharing policy,
e.g. subscriber, node, service endpoint, traffic flow. By def-
inition, throughput is a measure derived from total packet
transmission during a time interval, the length of which is
called timescale. Current resource sharing control methods
are based on throughput measured only on a short timescale
(e.g. round trip time (RTT)).

For bursty traffic, throughput measured on multiple
timescales (e.g. RTT, 1 s, 10 s, session duration) usually results
in different values. From the end-user perspective, network
performance is better described by throughput during the
active periods of a source as opposed to the general case
when active and inactive periods are both considered. Tak-
ing the history of inactivity into account is advantageous for
short transmissions like web downloads or initial buffering
of adaptive video streaming. A comprehensive recent survey
on fairness [1] states that “getting a scheme to instantly serve
web flows for improved performance while maintaining fair-
ness between other persistent traffic remains an open and
significant design problem to be investigated.” The authors
of [8] introduce a Multi-Timescale Bandwidth Profile (MTS-
BWP), which defines and implements multi-timescale fair-
ness for a few sources in well-defined and well-dimensioned
scenarios. MTS-BWP profiles against several token buck-
ets per Drop Precedence representing increasing timescales
of measurements. MTS-BWP does not scale as the number
of drop precedences increases; therefore, it cannot provide
fine-grained control.
In this paper, we extend the Per Packet Value (PPV) con-

cept [6, 7] and the MTS-BWP [8] to provide fine-grained
fairness on multiple timescales that is independent of traf-
fic mixes and resource bandwidths. Compared to [6], the
proposed solution only replaces the packet marker in the
edge of the network and does not require any changes in
the core of the network. To this end, we propose a practical

30

https://doi.org/10.1145/3340301.3341124
https://doi.org/10.1145/3340301.3341124
https://doi.org/10.1145/3340301.3341124

ANRW ’19, July 22, 2019, Montreal, QC, Canada Sz. Nádas, G. Gombos, F. Fejes, S. Laki

10−2 10−1 100 101 102 103

Throughput [Mbps]

105

106

107

108

109

1010

P
ac
ke
t
V
al
ue

(I.)

(II.)

(III.)

2x

10M-rest

4x

Gold (G)

Silver (S)

Background (B)

Voice (V)

Figure 1: TVF examples, log-log scale.

multi-timescale packet marking method having moderate
memory footprint and computational complexity.

2 PPV OVERVIEW
The PPV concept [7] extends the idea of core stateless re-
source sharing solutions like [2, 9] by marking each packet
with a continuous value called Packet Value (PV). The main
goal in a PPV network is to maximize the total aggregate PV
of delivered packets. The system model of PPV is split into
two phases: 1) Packet marking at network edge; 2) Packet
scheduling and dropping based on the Packet Value at re-
source nodes.
First, packets are marked at the edge of the network by

using the resource sharing policy of the operator. Operator
policies are described by Throughput-Value Functions (TVFs)
(marked by V (.)), that defines the PV distribution of a flow
for any sending rate (R). Specifically, if one measures the
throughput of the marked packets of a flow having PV of
V (b) or higher, it should be b (for any b : 0 ≤ b ≤ R).
Accordingly, at high congestion only packets with high PVs
are transmitted, more precisely packets with PV above a
given Congestion Threshold Value (CTV) that reflects the
actual congestion level. Note that the amount of high and low
PV packets determines the resource share between various
flows, resulting in that at high congestion, flows with larger
share of high PV packets receive more throughput.
Fig. 1 shows examples for different operator policies ex-

pressed as TVFs that describe conditional weighted resource
sharing between three classes, Gold, Silver, and Background
while Voice has strict priority up to 64 Kbps. The intersec-
tion of the TVFs with horizontal lines representing different
congestion levels (i.e. CTVs) defines the desired throughput
of the classes at the given congestion level. Until Silver flows
reach 10 Mbps, Gold flows get twice the throughput of Sil-
ver ones (I.). When the throughput of Silver flows is above
10 Mbps, Gold flows get four times the throughput (III.). In
between, Silver flows get 10 Mbps, and Gold flows get the

rest (which will be between 20 Mbps and 40 Mbps) (II.). For
this range of congestion levels, the Silver policy implements
a rate limiter at 10 Mbps. The figure also shows a background
traffic class that has a small share of moderate PV to keep
connectivity going, but receives larger bandwidth only if
there is little or no congestion.

Second, resource nodes in the middle of the network treat
packets without maintaining flow-states, solely relying on
the carried PVs. Each such node aims at maximizing the to-
tal amount of value transmitted over the shared bottleneck,
solving resource sharing in this way. To this end, PPV frame-
work proposes simple PV-based scheduling algorithms [6, 7]
including algorithms that drops the packet with the small-
est PV (even from the middle of the buffer) when the buffer
length is too long or using PI controllers to determine a PV
threshold for packet dropping. Among the different propos-
als, we use a congestion control independent AQM algorithm
called CSAQM [6] without any modification in this paper.
CSAQM applies a simple PV threshold-based ECN-marking
or packet dropping strategy in the middle of the network.

3 MULTI-TIMESCALE FAIRNESS
For bandwidth profiling, bitrate is typically measured on a
short timescale in the order of RTT. It expresses the instan-
taneous resource usage and it can even capture short bursts.
However, for ensuring long-term fairness (or network usage
SLA) among flows with largely different profiles, bitrates on
longer timescales are far more expressive.

In this paper, we use several timescales (TS) with different
length: TS1 ≈ RTT < TS2 < . . . < TSn . For a flow with
an equally paced, stable traffic, after the time associated
with the longest timescale has elapsed, we expect all those
rate measurements to be the same (Ri ≈ R, ∀TSi). However,
in transient situations, e.g. when transmission starts for a
previously silent flow, we expect small rate measurements
of long timescales, while R1 (of TS1 ≈ RTT) may be high
(i.e. R1 > R2 > . . . > Rn). Rate measurements at shorter
timescales react faster to the changes of network conditions,
while at longer timescales temporal changes may remain
invisible. Similar behavior with the opposite ordering can
be seen for a case when a flow stops transmission (or its
rate decreases) after a long active period. Fig. 4c depicts rate
measurements for three TSs in a two-flow scenario where
both transmission start and rate decrease can be observed.
Balancing rates on all timescales creates the right incen-

tives for controlling a traffic flow, e.g. when it represents
the aggregated traffic of a subscriber. After an inactive/silent
period of a subscriber it gets advantage for its new session (in
long term the network resource was underused), while if it
is transmitting for a long time it does not (long term fairness
does not allow further increase in the resource share).

31

Towards Core-Stateless Fairness on Multiple Timescales ANRW ’19, July 22, 2019, Montreal, QC, Canada

Based on the detailed analysis of [5], we created two
rate measurement algorithms (RMA): 1) a token bucket
emulation-based one for the RTT timescale and 2) an ef-
ficient sliding window-based one for longer timescales.

Token bucket emulation RMA. This algorithm maintains a
changing-rate token bucket and tries to set the rate such that
the bucket never gets full or empty. It aims at modeling the
fair throughput and buffer share of the flow at the bottleneck
scheduler. It has the following parameters: TS representing
the timescale, fMBS = 0.1 a factor affecting the maximum
bucket size (MBS) andMBSmin = 5× 1500Bytes the smallest
MBS (a few MTU).
Initialization: Bucket rate R = 0, token level L = 0, last
update tlast = 0.
Packet Arrival:When a packet of size ps arrives at time t
we update L = L + R × (t − tlast) − ps, and tlast = t .

Then if the token level becomes negative, (L < 0) we in-
crease the rate according to the extra bits arrived, R =
R − L/TS and we set L = 0.

Otherwise, if the token level is too large, (L > MBS, MBS =
max(MBSmin,R × TS × fMBS)) we decrease the token rate
and adjust the token level, R = R − (L −MBS)/TS, L = MBS .
We check the resulting R, and if it is smaller than the rate
of the packet just arrived on TS , R < ps/TS, then we set
R = ps/TS, L = 0.

The default is when the token level is within the desired
range. In this case, we do not change R and L.

Sliding window-based RMA. We use a practical approxima-
tion of the Time-Dependent Rate Measurement algorithm
with Time Window Moving Average (TDRM-TWMA) [5].
(TWMA calculates the rate as the “amount of bits arrived
in the last TS time” divided by TS). Our approximation has
the following parameters: TS represents the timescale, and
N denotes how many disjoint time windows (of size TS/N)
we use for the approximation (plus we use one more time
window of changing size). The memory footprint of the algo-
rithm is dominated by N that is set to 10 in our experiments
shown later in this paper.
Initialization: Rate R = 0, total bits in all intervals b = 0,
last interval start tstar t = 0, bits arrived in all intervals
b[i] = 0, i = 0 . . .N . Accordingly, b[i] (i ≥ 1) represents bits
arrived in the time interval [tstar t − i ∗TS/N , tstar t − (i −
1) ∗TS/N], b[0] represents the bits arrived since tstar t . Note
that b =

∑N
i=0 b[i] is only used for optimization.

Packet Arrival: When a packet of size ps arrives at time
t we first maintain time windows. Then we increase b[0] =
b[0] + ps (and b = b + ps). We calculate the rate as

R =

(
b −

t − tstar t
TS/N

· b[N]

)
/TS,

log(Throughput)

lo
g(

P
ac

ke
t

V
al

u
e

)

D3

TVF4 TVF3 TVF2 TVF1

D1

�

D2

1 2 3 4 5 6 7

�

�

�

� r

� r + D3

� r + D3 + D2

� r + D3 + D2 + D1

Figure 2: Determination of PV for a 4-timescale case

where we compensate that t −tstar t time has already elapsed
in the current time window, b[0], therefore a fraction accord-
ing to that time window is subtracted from the oldest time
window, b[N].
Maintain timewindows: In this part wemake sure that the
current time window, b[0], is not longer than TS/N . When
it becomes longer, we phase out old history and open a new
time window1. While t − tstar t > TS/N we repeat the rest
of the actions in this part. For all b[i], i = N . . . 1, we set
b[i] = b[i − 1], and we set b[0] = 0 and b =

∑N
i=1 b[i]. Then

we set tstar t = tstar t +TS/N .

3.1 Multi-Timescale TVF (MTS-TVF)
Instead of having a single TVF per flow type, we define one
TVF per TS (per flow type). Fig. 2 depicts an example with
four TVFs: TV F4 . . .TV F1 (disregard the other markings for
the time being). A high-level description is that a givenTV Fi
shall dominate the resource share of the flow when the rate
on that timescale (Ri) is dominant. E.g. if a flow has dominant
R4 and another one has dominant R1, their resource share
shall be according to TV F4 and TV F1, as if those would be
single-timescale TVFs. At the same time, we aim at smooth
transmission as the relations between the rates (Ri) changes.
As we want to achieve higher throughput for small bursts,
TV Fi (x) ≥ TV Fi+1(x) for all i ,x .

3.2 MTS Rate Measurement-based Marker
For a single-timescale TVF we can mark packets by measur-
ing the bitrate R, determining a uniform random throughput
r ∈ [0, R], and setting the PV to TVF(r). We aim to generalize
this simple packet marking algorithm for the MTS-TVF. We
create and explain an algorithm, which chooses the right

1 In the simulator implementation we use a circular buffer structure to avoid
copying b[i]s. We describe the algorithm this way because of clarity.

32

ANRW ’19, July 22, 2019, Montreal, QC, Canada Sz. Nádas, G. Gombos, F. Fejes, S. Laki

Throughput

P
ac

ke
t

V
al

u
e

TVF2
TVF1

Ri,1Ri,2

Ri+1,2 Ri+1,1PVi

PVi+1

R2 R2+D

PVi

PVi+1

TBi,2

TB i+1,2

TBi,1

TB i+1,1

Figure 3: A quantized MTS-TVF example

TV Fi and the right throughput value, based on the measured
bitrates and a random throughput.
The TVFs in Fig. 2 could be quantized to a Token Bucket

matrix like in [8]. That would mean several thousand token
buckets (i.e. the quantized PV range × the number of TSs),
which is not practical to implement. This model however
helps us to design an efficient packet marker implementation.
Fig. 3 depicts a quantized two-timescale MTS-TVF exam-

ple. Similarly to the MTS-BWP [8] a packet can be marked
to PVi if Token Buckets TBi ,2 and TBi ,1 (with rates Ri ,2
and Ri ,1) both contain enough tokens. Ri ,1 > Ri ,2, and
Ri+1,1 > Ri+1,2, because the TVFs are parallel on logarithmic
scale. At the same time, maximum token levels for the token
buckets (BSi , j = Ri , j ∗ TS j) normally have different order
(BSi ,1 < BSi ,2 and BSi+1,1 < BSi+1,2), because the multipli-
ers between TSis are usually larger than the ones between
TV Fi s.

Specifically in case of PVi for a burst, TBi ,1 will first be
emptied (before TBi ,2). When TBi ,2 is also emptied that
means that on the TS2 the token buckets representing TV F2
measure R2 =

∑i
j=1 R j ,2. (It is easy to see that buckets TBj ,2,

j < i are emptied before TBi ,2). Assuming that TBi+1,2 is
not yet emptied, then until R2 the TV F2 will be used when
marking packets. Above R2,TV F1 will be used. However, the
region between R2 and R2 + ∆ cannot be used (of any TVF)
for packet marking. ∆ is the distance between the two TVFs
at PV = TV F2(R2).
This suggests that by measuring the rate on both

timescales we can simplify the packet marking for this two-
TVF case. We determine a uniform random number, r be-
tween 0 and R1. If r ≤ R2 we mark the packet to TV F2(r),
otherwise we mark it to TV F1(r + ∆).
We generalize this concept to several timescales and call

the resulting packet marker MTS Rate Measurement-based
Marker (MTS-RMM). In Fig. 2 we demonstrate the method
using a 4 TS example. When updating the rate measurements
for different timescales (Ri) we also update the distances of
TV Fi from TV Fi+1 (called ∆i) at the relevant rates. Only
regions 1, 3, 5, 7 are used for determining PV; the blue TVF
is the one used in each region. Depending on the relation
between the random throughput r ∈ [0, R1] and Ris, the
region and ∆i s to add are chosen (indicated by the numbers

in black circles next to the blue regions). E.g. if R3 < r < R2,
the PV is set to TV F2(r + ∆3 + ∆2).
We detail the generic algorithm below (it works for any

order of Ris, not only for R1 > R2 > . . . > Rn as in the
example). When a packet arrives into the packet marker,
after updating the rate measurements (Ri), we update ∆i s as
follows:
Initialization: k is the number of TSs (e.g. 4), R′

k = Rk ,
i = k − 1.
Calculation of ∆is: R′

i = max(R′
i+1,Ri) is the largest mea-

sured bitrate on all TS j , j ≥ i .

∆i = TV F−1i

(
TV Fi+1

(
R′
i+1 +

k−1∑
j=i+1

∆j

))
−

(
R′
i+1 +

k−1∑
j=i+1

∆j

)
.

Then set i = i − 1 and repeat the calculation until i < 1.
If the longest timescale bitrate that changed is R j , then all

∆is, i ≥ j remain unchanged. By only updating Rk s when
they would significantly change (instead of for every packet
arrival), the computation demand can be further optimized.
After updating Ri s and ∆i s, we determine a uniform ran-

dom throughput r ∈ [0, R1]. We search for the maximum
i , where r ≤ Ri then we mark the packet according to
PV = TV Fi

(
r +

∑k−1
j=i ∆j

)
. This finds the right region in

Fig. 2, chooses the ∆js to add, and the TV Fi to use.

4 EVALUATION
MTS-RMM described in Section 3 has been implemented and
evaluated in the NS-3 simulator [4]. The bottleneck node
applies the CSAQM scheme described in [6] with 10 ms
queueing delay target. In all the examined simulation sce-
narios, we consider a single downlink bottleneck where the
same bottleneck buffer is shared by several flows. We also as-
sume that there is no uplink bottleneck. The term flow refers
to a piece of traffic to which an operator policy expressed by
a specific MTS-TVF is applied.
In our simulations, each flow consists of 1 or 4 TCP

connections using DCTCP or CUBIC [3] as the conges-
tion control algorithm, respectively. The default round-trip
propagation delay is moderate (10 ms). In the simulations,
MTS-RMM is used with 4 timescales: 10ms, 1s, 5s, and 10s.
TV F4 is configured to be Gold or Silver, according to Fig. 1.
TVFs for shorter timescales are configured to have weights
2, 4 and 8 compared to TV F4, i.e. TV F3(x) = TV F4(x/2),
TV F2(x) = TV F4(x/4), TV F1(x) = TV F4(x/8). The single-
timescale marker of the original PPV framework is used as
reference in the presented scenarios. It is configured with a
single TVF: TV F (x) = TV F4(x).

Greedy flows of the same traffic class. We configure perma-
nent background Gold TCP flows (1 or 10) in the network,
and a new TCP flow from the same class (Gold) arrives at

33

Towards Core-Stateless Fairness on Multiple Timescales ANRW ’19, July 22, 2019, Montreal, QC, Canada

0 10 20 30 40
Time [sec]

0

25

50

75

100

T
hr
ou
gh
pu

t
[M

bp
s]

50 Mbps

1s 5s 10s

(a) DCTCP flows with MTS Marker

0 10 20 30 40
Time [sec]

0

25

50

75

100

T
hr
ou
gh
pu

t
[M

bp
s]

50 Mbps

1s 5s 10s

(b) DCTCP flows with Ref. Marker

0 10 20 30 40
Time [sec]

0

25

50

75

100

R
at
e
M
ea
s.

[M
bp

s]

1s 5s 10s

TS=1s

TS=5s

TS=10s

(c) Rate measurements of MTS Marker

Figure 4: Resource sharing for a new flow with good history, same traffic class, C=100Mbps.

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Flow Time [sec]

0.0

0.5

1.0

1.5

2.0

R
el
.
R
es
ou
rc
e
S
ha
re

CUBIC-MTS

DCTCP-MTS

CUBIC-Ref.

DCTCP-Ref.

(a) Flow-Time Average

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Flow Time [sec]

10−1

100

R
el
.
R
es
ou
rc
e
S
ha
re

CUBIC-MTS

DCTCP-MTS

CUBIC-Ref.

DCTCP-Ref.

(b) 5s Time-Window Average

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Flow Time [sec]

10−1

100

R
el
.
R
es
ou
rc
e
S
ha
re

CUBIC-MTS

DCTCP-MTS

CUBIC-Ref.

DCTCP-Ref.

(c) 10s Time-Window Average

Figure 5: Relative resource share for the new flow, same traffic class, 10 background flows, C=1Gbps

the bottleneck. Every new flow belongs to a separate traffic
aggregate, thus upon start-up all its rate measurements are
0. The bottleneck capacity (C) is 100 Mbps or 1Gbps. A time-
series plot of flow throughput with 1 background flow and
C = 100Mbps is depicted in Fig. 4a for DCTCP flows. For
reference, we depict the throughput for DCTCP flows with
(single-timescale) PPV in Fig. 4b. For the MTS-RMM, the new
flow increases its throughput much faster in the first seconds
than for the reference. It is visible that the high initial boost
for the new flow will be compensated later in favor of the old
flow and after some oscillation, the flow throughput will be
equal. Fig. 4c is the time-series plot of the rate measurements
in the MTS-RMM used in Fig. 4a for the background flow
(solid lines) and the new flow (dashed lines).

Fig. 5 depicts a scenario with 10 greedy background flows
and C = 1Gbps. The new flow arrives 15 s after the back-
ground flows. We compare the performance of MTS-RMM
and the single-timescale PPV marked “Ref.”. The relative
resource share is the calculated throughput divided by the
long term fair share throughput of the flow. We show the
Flow-Time Average (5a) that for any time instance t > 0 is
calculated as the total number of bits of the flow transmitted
till t divided by t , where t = 0 is the start time of the new

flow. For TCP flows the Flow-Time Average grows faster
than in the reference case and it grows above the long-time
fair share in the first 10 s as desired. By 10 s it gets close to
the long-term fair share. In the Cubic case, we have 4 TCP
connections per flow (vs. 1 for DCTCP), which explains the
faster start. Figs. 5b,5c illustrate the 5s and 10s time window
average of the observed throughput. For any time t , the time
window average is calculated as the average throughput of
the flow in interval [t −W , t), whereW denotes the window
size (5s and 10s). These figures show that a flow approaches
its long-time fair share much faster with MTS-RMM. E.g. the
5s average throughput of the Cubic flow on Fig. 5b reaches
it long-time fair share after being in the system for 2 s.

Greedy flows of different traffic classes. In these cases, the
new flow is from the Silver class, which means that its long-
time fair share is smaller than that of the flows already in
the system. Still short term it is to be boosted when it has
no previous transmission. Fig. 6 depicts time-series plots
for DCTCP (6a) and Cubic (6b) TCP flows. Fig. 6c depicts a
reference (PPV) simulation. The observed behavior is similar
to the previous scenario, MTS-RMM marking gives more re-
source to the newcomer flow in the defined timescale ranges

34

ANRW ’19, July 22, 2019, Montreal, QC, Canada Sz. Nádas, G. Gombos, F. Fejes, S. Laki

0 10 20 30 40
Time [sec]

0

25

50

75

100

T
hr
ou
gh
pu

t
[M

bp
s]

S-ideal:20 Mbps

G-ideal:80 Mbps

1s 5s 10s

(a) DCTCP flows with MTS-RMM

0 10 20 30 40
Time [sec]

0

25

50

75

100

T
hr
ou
gh
pu

t
[M

bp
s]

S-ideal:20 Mbps

G-ideal:80 Mbps

1s 5s 10s

(b) Cubic flows with MTS-RMM

0 10 20 30 40
Time [sec]

0

25

50

75

100

T
hr
ou
gh
pu

t
[M

bp
s]

S-ideal:20 Mbps

G-ideal:80 Mbps

1s 5s 10s

(c) DCTCP flows with Ref. Marker

Figure 6: Resource sharing for a new flow with good history, different traffic class, C=100Mbps.

0 50 100 150 200
Time [sec]

100

101

T
hr
ou
gh
pu

t
[M

bp
s]

0 10 20 30 40 50

[sec]

10

20

30

40

[M
bp

s]

Figure 7: Continuous arrival, 10 flows every 10 s, same
traffic class, C=200Mbps.

and converges to the long-time fair share after 10 s. Cu-
bic flows still get a higher initial share, again due to the 4
connections resulting in a more aggressive slow start.
Considering Flow-Time Average, the 5s and 10s Time-

Window Avarage relative to the long-term fair share, the
achieved relative acceleration is even higher than in the
previous scenario shown in Fig. 5, especially for the Cubic
case, as the fair share of Silver flows is smaller while the TCP
start-up speed is the same.

Continuous flow arrival. In this case, 10 new Gold TCP
flows arrive to a C = 200Mbps bottleneck every 10 s (240
flows in the end). Fig. 7 depicts this case; the different batches
are denoted by different colors. It can be observed that the
new flows are temporarily boosted, and that flows in the
system for a longer period have equal shares.

Simple adaptive streaming model. A Gold adaptive stream-
ing flow shares aC = 35Mbps bottleneck with 9 greedy Gold
TCP flows. All flows have 1 TCP connection. We use a simpli-
fied adaptive video streaming model, starting at t = 10 s, the
streaming flow downloads 2,5 MByte data initiated every 10 s.
Fig. 8 compares the throughput of the adaptive streaming

10 20 30 40 50 60
Time [s]

0

5

10

T
hr
ou
gh
pu

t
[M

bp
s] 0.32

0.77
CUBIC-MTS

CUBIC-Ref.

Figure 8: Adaptive streaming comparison

flow in the MTS-RMM and single TS (Ref.) case. The dotted
vertical lines show when 0.25 Mbyte has been downloaded,
which models the time to play the video, i.e. having enough
initial buffers. The silent periods stand for having enough
playout buffer, while the restart of the session models the
case when the buffer needs to be refilled. MTS-RMM has
clear advantages, the time to play is much shorter, and it
always fills the playout buffer faster, which means shorter
transmission periods, which results in smaller battery use.

5 DISCUSSION
Though the initial results presented in this paper demon-
strate the benefits of ensuring fairness onmultiple timescales,
several questions are left unsolved. On one side, we have pre-
sented that a significant performance gain can be obtained
with the proposed concept by accelerating the starting phase
of new flows, and providing better long-term fairness for
flows with on-off behavior (e.g. DASH-like traffic) and better
network access (higher throughput) for short flows. How-
ever, on the other side several details of the main concept
require further research, including open questions like 1)
What is the practical number of timescales to be used? 2)
How shall the timescales be dimensioned? 3) How to design
multi-timescale TVFs? Does it make sense to use a different
kind of policy at various timescales? 4) What further policies
that have practical relevance can be described in this model?

35

Towards Core-Stateless Fairness on Multiple Timescales ANRW ’19, July 22, 2019, Montreal, QC, Canada

ACKNOWLEDGEMENT
The authors thank the support of Ericsson Hungary Ltd. G.
Gombos also thanks the support of the European Union, co-
financed by the European Social Fund (EFOP-3.6.2-16-2017-
00013). The research of S. Laki was supported by the János
Bolyai Research Scholarship of the Hungarian Academy of
Sciences. The authors thank the anonymous reviewers for
their suggestions on how to improve clarity of the paper.

REFERENCES
[1] Ghulam Abbas, Zahid Halim, and Ziaul Haq Abbas. 2016. Fairness-

driven queue management: A survey and taxonomy. IEEE Communica-
tions Surveys & Tutorials 18, 1 (2016), 324–367.

[2] Zhiruo Cao, Ellen Zegura, and Zheng Wang. 2005. Rainbow fair queue-
ing: theory and applications. Computer Networks 47, 3 (2005), 367 – 392.
https://doi.org/10.1016/j.comnet.2004.07.018

[3] Sangtae Ha, Injong Rhee, and Lisong Xu. 2008. CUBIC: A New TCP-
friendly High-speed TCP Variant. SIGOPS Oper. Syst. Rev. 42, 5 (July
2008), 64–74. https://doi.org/10.1145/1400097.1400105

[4] Thomas R Henderson, Mathieu Lacage, George F Riley, C Dowell, and J
Kopena. 2008. Network simulations with the ns-3 simulator. In Sigcomm
(Demo), Vol. 14.

[5] Michael Menth and Frederik Hauser. 2017. On moving averages, his-
tograms and time-dependentrates for online measurement. In Proceed-
ings of the 8th ACM/SPEC on International Conference on Performance
Engineering. ACM, 103–114.

[6] Szilveszter Nádas, Gergő Gombos, Péter Hudoba, and Sándor Laki. 2018.
Towards a Congestion Control-Independent Core-Stateless AQM. In
ANRW ’18. 84–90. https://doi.org/10.1145/3232755.3232777

[7] Szilveszter Nádas, Zoltán Richárd Turányi, and Sándor Rácz. 2016. Per
Packet Value: A Practical Concept for Network Resource Sharing. In
IEEE Globecom 2016.

[8] Szilveszter Nádas, Balázs Varga, Illés Horváth, András Mészáros, and
Miklós Telek. 2019. Multi timescale bandwidth profile and its application
for burst-aware fairness. arXiv preprint arXiv:1903.08075 (2019).

[9] Ion Stoica, Scott Shenker, and Hui Zhang. 2003. Core-stateless Fair
Queueing: A Scalable Architecture to Approximate Fair Bandwidth
Allocations in High-speed Networks. IEEE/ACM Trans. Netw. 11, 1 (Feb.
2003), 33–46. https://doi.org/10.1109/TNET.2002.808414

36

https://doi.org/10.1016/j.comnet.2004.07.018
https://doi.org/10.1145/1400097.1400105
https://doi.org/10.1145/3232755.3232777
https://doi.org/10.1109/TNET.2002.808414

	Abstract
	1 Introduction
	2 PPV Overview
	3 Multi-timescale Fairness
	3.1 Multi-Timescale TVF (MTS-TVF)
	3.2 MTS Rate Measurement-based Marker

	4 Evaluation
	5 Discussion
	References

