
Checking-in on Network Functions
by Zeeshan Lakhani and Heather Miller

@

The rise of network functions?

Checking-in on Network Functions 2Lakhani/Miller

The rise of network functions?

Checking-in on Network Functions 2Lakhani/Miller

∨
Firewall IDS LB

The rise of network functions?

Checking-in on Network Functions 2Lakhani/Miller

∨
Firewall IDS LB

The rise of network functions?

Checking-in on Network Functions 2Lakhani/Miller

∨
Firewall IDS LB

The rise of network functions?

Checking-in on Network Functions 2Lakhani/Miller

writing and modeling
∧

Pyretic Slick NetKat

The rise of network functions?

Checking-in on Network Functions 3Lakhani/Miller

writing and modeling
∧

Writing network functions is not
“composed of nothing more than algorithms and small programs”[1]

 complex routing and load balancing policies
 traffic monitoring
 experimental/new specifications, protocols, and headers
 computation and aggregation
(e.g. In-Network Computation is a Dumb Idea Whose Time Has Come)

[1] Cultures of programming: Understanding the history of programming through controversies and technical artifacts
 by Tomas Petricek, University of Kent, UK, 2019

https://mcanini.github.io/papers/daiet.hotnets17.pdf
http://tomasp.net/academic/drafts/cultures/cultures.pdf

Motivation

 4Checking-in on Network FunctionsLakhani/Miller

Motivation

 4

If I program in React, can I program a network function?

Checking-in on Network FunctionsLakhani/Miller

Motivation

 4

If I program in React, can I program a network function?

Checking-in on Network FunctionsLakhani/Miller

How do we know what we’re doing is right?

Motivation

 4

If I program in React, can I program a network function?

Checking-in on Network FunctionsLakhani/Miller

How do we know what we’re doing is right?

How can we iterate?

Motivation

 4Checking-in on Network FunctionsLakhani/Miller

 Limits of Correctness
 e.g. reliance on OpenFlow protocol

Motivation

 4Checking-in on Network FunctionsLakhani/Miller

 Limits of Correctness
 e.g. reliance on OpenFlow protocol

 Arbitrary (ad-hoc) Logic & Variable-length Data, e.g. Ipv6 Extensions, ndp options
 packet length
 failure and reconfiguration

Motivation

 5Checking-in on Network FunctionsLakhani/Miller

[2]

[2] The Click Modular Router by Eddie Kohler, et. al., Laboratory for Computer Science, MIT, 1999

https://pdos.csail.mit.edu/papers/click:tocs00/paper.pdf

Two examples

 6Checking-in on Network FunctionsLakhani/Miller

MTU: Send Too Big

 swap ethernet addresses
 swap src/dst
 change protocol
 set mtu info
 calculate checksum

Ipv6 Extension Headers: SRH

Two examples

 6Checking-in on Network FunctionsLakhani/Miller

MTU: Send Too Big

 swap ethernet addresses
 swap src/dst
 change protocol
 set mtu info
 calculate checksum

Ipv6 Extension Headers: SRH

Kinds of Contracts

 7Checking-in on Network FunctionsLakhani/Miller

Kinds of Contracts

 7Checking-in on Network FunctionsLakhani/Miller

focused on how runtime contracts can be turned on for monitoring and
testing situations so that developers can
“sit back, and just watch their contracts be violated”

 erased on release binaries

Design by Contract

Kinds of Contracts

 7Checking-in on Network FunctionsLakhani/Miller

focused on how runtime contracts can be turned on for monitoring and
testing situations so that developers can
“sit back, and just watch their contracts be violated”

 erased on release binaries

Design by Contract

Static Assertions compile-time assertions for consts, statics
 remain in release binaries

Kinds of Contracts

 7Checking-in on Network FunctionsLakhani/Miller

focused on how runtime contracts can be turned on for monitoring and
testing situations so that developers can
“sit back, and just watch their contracts be violated”

 erased on release binaries

Design by Contract

Static Assertions compile-time assertions for consts, statics
 remain in release binaries

Static Order-
Preserving Headers

Kinds of Contracts: Design by Contract

 8Checking-in on Network FunctionsLakhani/Miller

Kinds of Contracts: Design by Contract

 8Checking-in on Network FunctionsLakhani/Miller

Kinds of Contracts: Design by Contract

 8Checking-in on Network FunctionsLakhani/Miller

Kinds of Contracts: Static Assertions

 9Checking-in on Network FunctionsLakhani/Miller

Kinds of Contracts: Static Assertions

 9Checking-in on Network FunctionsLakhani/Miller

Kinds of Contracts: Static Assertions

 9Checking-in on Network FunctionsLakhani/Miller

Kinds of Contracts: Static Order-Persevering Headers

 10Checking-in on Network FunctionsLakhani/Miller

Kinds of Contracts: Static Order-Persevering Headers

 10Checking-in on Network FunctionsLakhani/Miller

Implementation

 11Checking-in on Network FunctionsLakhani/Miller

Implementation

 11Checking-in on Network FunctionsLakhani/Miller

 prototyped as a gradual extension to NetBricks (i.e.
 NetBricks: Taking the V out of NFV, OSDI 2016)

Implementation

 11Checking-in on Network FunctionsLakhani/Miller

 prototyped as a gradual extension to NetBricks (i.e.
 NetBricks: Taking the V out of NFV, OSDI 2016)

Focused on Zero-Copy
Soft Isolation

Implementation

 11Checking-in on Network FunctionsLakhani/Miller

 prototyped as a gradual extension to NetBricks (i.e.
 NetBricks: Taking the V out of NFV, OSDI 2016)
 implemented as a small rust library to easily write

 specifications, which generates code for validations and
 assertions at compile-time

Focused on Zero-Copy
Soft Isolation

Implementation

 11Checking-in on Network FunctionsLakhani/Miller

 prototyped as a gradual extension to NetBricks (i.e.
 NetBricks: Taking the V out of NFV, OSDI 2016)
 implemented as a small rust library to easily write

 specifications, which generates code for validations and
 assertions at compile-time

Focused on Zero-Copy
Soft Isolation

macros turn
checks into static and

dynamic contracts

Implementation

 12Checking-in on Network FunctionsLakhani/Miller

In Action

 13Checking-in on Network FunctionsLakhani/Miller

In Action

 13Checking-in on Network FunctionsLakhani/Miller

order is checked
statically via a trace of

packet contents

In Action

 13Checking-in on Network FunctionsLakhani/Miller

order is checked
statically via a trace of

packet contents

pre-checks validate incoming
contents and store contents @ runtime

In Action

 13Checking-in on Network FunctionsLakhani/Miller

order is checked
statically via a trace of

packet contents

pre-checks validate incoming
contents and store contents @ runtime

post-checks validate transformed
contents against pre-check contents

Evaluation

 14Checking-in on Network FunctionsLakhani/Miller

Evaluation

 14Checking-in on Network FunctionsLakhani/Miller

Design Phase

Evaluation: Syntax Added

 15Checking-in on Network FunctionsLakhani/Miller

Evaluation: Compilation Time

 16Checking-in on Network FunctionsLakhani/Miller

Evaluation: Runtime Cost

 17Checking-in on Network FunctionsLakhani/Miller

Due to:
 mirroring and tracing packet contents
 runtime checks
 storage overhead

Evaluation: Runtime Cost

 17Checking-in on Network FunctionsLakhani/Miller

Due to:
 mirroring and tracing packet contents
 runtime checks
 storage overhead

Design Phase

Future Work

 18Checking-in on Network FunctionsLakhani/Miller

 deployment models / running contracts in simulation / CI
 e.g. via Mininet / Containernet

 (further) leverage static analysis of input programs
 interactive feedback (many examples in UI tooling and langs like Elm and Rust)

 program slicing
 refinement via domain-specific heuristics and constraint solving

In Practice

 19Checking-in on Network FunctionsLakhani/Miller

Scoped Side Effects

 cascade
 packet length
 checksum
 etc…

Typed Packets

Header : TCP
Envelope : T < T : IpPacket >

λ → λ

Takeaways

 20Checking-in on Network FunctionsLakhani/Miller

 we need better approaches to VERIFY and INTERACT with
 network functions and packet processing program properties
 here, we provide a HYBRID-APPROACH and implementation for

 GRADUALLY checking and validating the arbitrary logic and
 side effects by

 COMBINING design by contract, static assertions and type-checking,
 and code generation via macros
 all without PENALIZING programmers at development time

