Checking-in on Network Functions

by Zeeshan Lakhani and Heather Miller

institute for
@ Carnegie Mellon University - SOFTWARE

RESEARCH

............

............

............

The rise of network functions?”

Lakhani/Miller Checking-in on Network Functions

............

............

............

Lakhani/Miller Checking-in on Network Functions

............

............

............

Lakhani/Miller Checking-in on Network Functions

............

............

............

Lakhani/Miller Checking-in on Network Functions 2

.......................

writing and modeling
The rise of'network functions? ™

............

............

class firewall(DynamicPolicy):

t Pyretic §
def __init_ (self): Cusasivarasiisainsnl
Initialize the firewall
print "initializing firewall"
self.firewall = {}
super(firewall,self).__init__ (true)
import threading
self.ui = threading.Thread(target=self.ui_loop)
self.ui.daemon = True
self.ui.start()

def AddRule (self, macl, mac2):
if (mac2,macl) in self.firewall:
print "Firewall rule for %s: %s already exists" % (macl,mac2)
return
self.firewalll[(macl,mac2)]=True
print "Adding firewall rule in %s: %s" % (macl,mac2)
self.update_policy()

def DeleteRule (self, macl, mac2):

try:
del self.firewall[(macl,mac2)]
print "Deleting firewall rule in %s: %s" % (macl,mac2)
self.update_policy()

except:
pass

try:
del self.firewall[(mac2,macl)]
print "Deleting firewall rule in %s: %s" % (macl,mac2)
self.update_policy()

except:
pass

Lakhani/Miller

class BlacklistDropper (Application):
def init(self, blacklist):
flow = self.make_wildcard_flow()
flow[’'tp_dst’] = 53
eds = self.apply_elem(flow, ["DnsDpi"])
if(self.check_elems_installed(eds)):
self.installed = True
droppers = list()

def handle_trigger(self, ed, trigger):
if(trigger[’type’] == ’'BlacklistedQuery’):
src_flow = self.make_wildcard_flow()
src_flow['nw_src’] = trigger[’src_ip’]
eds = apply_elem(src_flow, ["DropAll"])
if(self.check_elems_installed(eds)):
droppers.append(eds[0])

Checking-in on Network Functions

(if typ = SSH then vlan := Welse 1) -

(if dst = A then pt := 1 else if dst = B then pt := 2 else 0)
if dst = A-typ = SSHthen vlan:=W .pt:=1

else if dst = A then pt:=1

else if dst = B - typ = SSH then vlan := W - pt := 2

else if dst = B then pt := 2

else 0

............

............

writing and modeling

............

The rise of'network functions? ™

Writing network functions is not
“composed of nothing more than algorithms and small programs”]

2> complex routing and load balancing policies
2 traffic monitoring
2 experimental/new specifications, protocols, and headers
> computation and aggregation
(e.g. In-Network Computation is a Dumb Idea Whose Time Has Come)

[1] Cultures of programming: Understanding the history of programming through controversies and technical artifacts
by Tomas Petricek, University of Kent, UK, 2019

Lakhani/Miller Checking-in on Network Functions

https://mcanini.github.io/papers/daiet.hotnets17.pdf
http://tomasp.net/academic/drafts/cultures/cultures.pdf

............

............

Motivation®

Lakhani/Miller

Checking-in on Network Functions

............

............

.Motivationjf

If | program in React, can | program a network function?

Lakhani/Miller Checking-in on Network Functions

............

............

.Motivationjf

If | program in React, can | program a network function?

How do we know what we're doing is right?

Lakhani/Miller Checking-in on Network Functions

............

............

.Motivationjf

If | program in React, can | program a network function?
How do we know what we're doing is right?

How can we iterate?

Lakhani/Miller Checking-in on Network Functions

............

............

.M()tivati()n:’

2 Limits of Correctness

2 e.g. reliance on OpenFlow protocol

Lakhani/Miller Checking-in on Network Functions

............

............

.Motivation.o

2 Limits of Correctness
> e.g. reliance on OpenFlow protocol

2 Arbitrary (ad-hoc) Logic & Variable-length Data, e.g. Ipv6 Extensions, ndp options
> packet length

2 failure and reconfiguration

Lakhani/Miller Checking-in on Network Functions

............

............

‘Motivationf

if(ntohs(ip->ip6_plen) > (plen - 4@)) [2]
goto bad ;

[2] The Click Modular Router by Eddie Kohler, et. al., Laboratory for Computer Science, MIT, 1999

Lakhani/Miller Checking-in on Network Functions

https://pdos.csail.mit.edu/papers/click:tocs00/paper.pdf

............

Two examples

MTU: Send Too Big Ipv6 Extension Headers: SRH

1>

0 1 2 3
7 Swapethernetaddresses 01234567890123456789012345678901
. OSSN S ST T S ST S ST ST S S SO ST ST S S ST ST S S S T S S S
> Swap Src/dst | Next Header | Hdr Ext Len | Routing Type | Segments Left |
’ S S S S S S ST ST ST S ST ST ST ST SO S S ST ST ST ST ST ST ST S S S S S
P, | Last Entry | Flags | Tag |
7 Change pI’OtOCOl bttt ettt ettt ettt -ttt —F—F—F—t—t—t bttt — b — b —F—F—F—F =+ —+
2 set mtu info Segment List[0] (128 bits IPv6 address)

~Z Ca I Cu I ate C h eC kS um S T NN WY ST WA WA WY SR WY WA WA WY WA WA WU SN WU WY WA WU WA WU WERY WA WA W WU AN WA W Y

bttt —t—t—t—t—t—t—t—t—t—F—t—t—t—t—t -ttt —F—F—t—F—F—F—F—F—+—+

Segment List[n] (128 bits IPv6é address)

t—t—t—t—t—t—t—t—t—t—t—t—t -ttt ettt -ttt —F—F—F—F—F—F—+—+

// //
// Optional Type Length Value objects (variable) //
// //

s I S S e s SN M S S S S S ST S

Lakhani/Miller Checking-in on Network Functions

Two examples

............

MTU: Send Too Big

Lakhani/Miller

Sid=

> swap ethernet addresses
, swap src/dst
, Change protocol
2 set mtu info
2 calculate checksum

Checking-in on Network Functions

Ipv6 Extension Headers: SRH

Decimal | Protocol RFC TANA

0 | Hop-by-Hop Options v v
43 | Routing v v
44 | Fragment v v
50 | Encapsulating Security Payload v v
51 | Authentication v v
60 | Destination Options v v
135 | Mobility Header v
139 | Host Identity Protocol v
140 | Shim6 v
253 | Experiments/testing purposes v
254 | Experiments/testing purposes v

............

Kinds of Contracts~

Lakhani/Miller

Checking-in on Network Functions

............

‘Kinds Of Contracts’% —

focused on how runtime contracts can be turned on for monitoring and
testing situations so that developers can

“sit back, and just watch their contracts be violated”

> erased on release binaries

Design by Contract

Lakhani/Miller Checking-in on Network Functions

............

‘Kinds Of Contracts’% —

focused on how runtime contracts can be turned on for monitoring and
testing situations so that developers can

“sit back, and just watch their contracts be violated”

2 erased on release binaries

Design by Contract

compile-time assertions for consts, statics
> remain in release binaries

Static Assertions

Lakhani/Miller Checking-in on Network Functions

............

‘Kinds Of Contracts’% —

focused on how runtime contracts can be turned on for monitoring and
testing situations so that developers can

“sit back, and just watch their contracts be violated”

2 erased on release binaries

Design by Contract]

compile-time assertions for consts, statics

Static Assertions | . o L
2 remain in release binaries

impl EndOffset for Ipv6Hdr {
type PreviousHdr=EthHdr ;
fn offset(&self) -> usize { 40 }

_ Static Order- |
{ Preserving Headers]

Lakhani/Miller Checking-in on Network Functions

........................
............

............

Kinds of Contracts: Design by Contract™

dependencies and related components in the system. These
contracts are usually separated into pre (input/ingress) and
post conditions (output/egress), where invariants can be as-
serted on for incoming and outgoing data accordingly.

In our system, design by contract-styled assertions help
programmers articulate what the values of fields in a header
should be equal to, bound by, approximate to, or how these
values may have shifted during packet transformation (e.g.
swapping of MAC addresses). From a processing perspective,
the input precondition runs when the packet enters a NF and
the postcondition runs as the packet is exiting the function.

Lakhani/Miller Checking-in on Network Functions

........................
............

............

Kinds of Contracts: Design by Contract™

dependencies and related components in the system. These
contracts are usually separated into pre (input/ingress) and
post conditions (output/egress), where invariants can be as-
serted on for incoming and outgoing data accordingly.

In our system, design by contract-styled assertions help
programmers articulate what the values of fields in a header
should be equal to, bound by, approximate to, or how these
values may have shifted during packet transformation (e.g.
swapping of MAC addresses). From a processing perspective,
the input precondition runs when the packet enters a NF and
the postcondition runs as the packet is exiting the function.

Lakhani/Miller Checking-in on Network Functions

............
............

............

Kinds of Contracts: Design by Contract™

_—

dependencies and related components in the system. These
contracts are usually separated into pre (input/ingress) and
post conditions (output/egress), where invariants can be as-
serted on for incoming and outgoing data accordingly.

In our system, design by contract-styled assertions help
programmers articulate what the values of fields in a header
should be equal to, bound by, approximate to, or how these
values may have shifted during packet transformation (e.g.
swapping of MAC addresses). From a processing perspective,
the input precondition runs when the packet enters a NF and
the postcondition runs as the packet is exiting the function.

Lakhani/Miller Checking-in on Network Functions

............

Kinds of Contracts: Static Assertions™

Lakhani/Miller

Static assertions, popularized in the C, C++, and D languages,
allow for compile-time assertions of statically defined expres-
sions, e.g. constants, statics. Beyond just checking for specific
values, static assertions can be used to enforce fields on struct
types and check if a pointer’s underlying value is the same
when coerced to another type. NF programs tend to be com-
prised of many constants referring to values derived from
specifications. For example, the [Pv6 minimum MTU value is
1280 [6], but is actually 1294 in practice when the Ethernet
header is included. Our approach can check this caveat stati-
cally at the call site where the NF is defined—not where it’s
instantiated—via compile-time assertions in our prototype
for constant checking. Additionally, thanks to conditional
compilation (see 4.1 for more information), static assertions
remain in release binaries.

Checking-in on Network Functions

............

Kinds of Contracts: Static Assertions™

Lakhani/Miller

Static assertions, popularized in the C, C++, and D languages,
allow for compile-time assertions of statically defined expres-
sions, e.g. constants, statics. Beyond just checking for specific
values, static assertions can be used to enforce fields on struct
types and check if a pointer’s underlying value is the same
when coerced to another type. NF programs tend to be com-
prised of many constants referring to values derived from
specifications. For example, the [Pv6 minimum MTU value is
1280 [6], but is actually 1294 in practice when the Ethernet
header is included. Our approach can check this caveat stati-
cally at the call site where the NF is defined—not where it’s
instantiated—via compile-time assertions in our prototype
for constant checking. Additionally, thanks to conditional
compilation (see 4.1 for more information), static assertions
remain in release binaries.

Checking-in on Network Functions

............

Kinds of Contracts: Static Assertions™

Lakhani/Miller

Static assertions, popularized in the C, C++, and D languages,
allow for compile-time assertions of statically defined expres-
sions, e.g. constants, statics. Beyond just checking for specific
values, static assertions can be used to enforce fields on struct
types and check if a pointer’s underlying value is the same
when coerced to another type. NF programs tend to be com-
prised of many constants referring to values derived from
specifications. For example, the IPv6 minimum MTU value is
1280 [6], but is actually 1294 in practice when the Ethernet
header is included. Our approach can check this caveat stati-
cally at the call site where the NF is defined—not where it’s
instantiated—via compile-time assertions in our prototype
for constant checking. Additionally, thanks to conditional
compilation (see 4.1 for more information), static assertions
remain in release binaries.

Checking-in on Network Functions

........................

............

............

Kinds of Contracts: Static Order-Persevering Headers™

we leverage this statically-defined order mechanism on head-
ers (4) to ensure that incoming and outgoing packet header
ordering is preserved according to encoded expectations.

Lakhani/Miller Checking-in on Network Functions

........................

............

............

Kinds of Contracts: Static Order-Persevering Headers™

we leverage this statically-defined order mechanism on head-
ers (4) to ensure that incoming and outgoing packet header
ordering is preserved according to encoded expectations.

Lakhani/Miller Checking-in on Network Functions

............

............

..............................

Implementati()n . .

Lakhani/Miller Checking-in on Network Functions

............

............

..............................

‘Implementati()n . .

@ 2 prototyped as a gradual extension to NetBricks (i.e.
@ DPDK NetBricks: Taking the V out of NFV, OSDI 2016)

Lakhani/Miller Checking-in on Network Functions

11

............

............

Implementation -~

i

Lakhani/Miller

®

-SSR S TUTECTEOPEY,

Focused on Zero-Copy
Soft Isolation

2 prototyped as a gradual extension to NetBricks (i.e.

@ DPDK " NetBricks: Taking the V out of NFV, OSDI 2016)

Checking-in on Network Functions

11

............

............

i

..............................

Implementati()n . .

Focused on Zero-Copy
Soft Isolation

@ 2 prototyped as a gradual extension to NetBricks (i.e.
@ DPDK NetBricks: Taking the V out of NFV, OSDI 2016)
2 implemented as a small rust library to easily write
specifications, which generates code for validations and

assertions at compile-time

Lakhani/Miller Checking-in on Network Functions

............

............

>

..............................

Implementati()n

Focused on Zero-Copy
Soft Isolation

@ 2 prototyped as a gradual extension to NetBricks (i.e.
@ DPDK " NetBricks: Taking the V out of NFV, OSDI 2016)
2> implemented as a small rust library to easily write

specifications, which generates code for validations and

assertions at compile-time macros turn

checks into static and
dynamic contracts

Lakhani/Miller Checking-in on Network Functions

............

............

ImplementatiOn

fn install<T, S>(ports: Vec<T>, sched: &mut S)

where
T: PacketRx + PacketTx + Display + Clone + ‘'static,
S: Scheduler + Sized,

{
@ D P D K for port in &ports {
DATA PLANE DEVELOPMENT KIT println!("Receiving port {}", port);

let pipelines: Vec<_> = ports
.iter()
.map(|port| {
ReceiveBatch: :new(port.clone())

.map(macswap)
.send(port.clone())
})
.collect();

println!("Running {} pipelines", pipelines.len());
for pipeline in pipelines {
sched.add_task(pipeline).unwrap();

fn macswap(packet: RawPacket) —-> Result<Ethernet> {
assert!(packet.refcnt() == 1);
let mut ethernet = packet.parse::<Ethernet>()?;
ethernet.swap_addresses();
Ok(ethernet)

Lakhani/Miller Checking-in on Network Functions

............

.............

.......................

.In Action:‘f

#[check (IPV6_MIN_MTU = 1280)]
fn send_too_big {
.pre(box pkt {
ingress_check! {
input: pkt,
order : [EthHdr=>Ipv6Hdr=>TcpHdr<Ipv6Hdr>],
checks: [(payload_len[Ipv6Hdr] , >, IPV6_MIN_MTU)]

13)
...filter/map/group_by operations...

.post(box pkt {
egress_check! {
input: pkt,
order :[EthHdr=>Ipv6Hdr=>Icmpv6PktTooBig<...>],

checks: [(checksum[Icmpv6PktTooBig] , neq, checksum[TcpHdr<Ipv6Hdr>]),

(payload_len[Ipv6Hdr] , ==, 1240),
(src[IpvbHdr] , ==, dst[Ipv6Hdr]),
(dst[Ipv6Hdr] , ==, src[Ipv6Hdr]),
(.src[EthHdr] , ==, .dst[EthHdr]),
(.dst[EthHdr] , ==, .src[EthHdr])]

31

Lakhani/Miller Checking-in on Network Functions

............

.............

............

.In Action:‘f

#[check (IPV6_MIN_MTU = 1280)]
fn send_too_big {
.pre(box pkt {
ingress_check! {
input: pkt,
order : [EthHdr=>Ipv6Hdr=>TcpHdr<Ipv6Hdr>],
checks: [(payload_len[Ipv6Hdr] , >, IPV6_MIN_MTU)]

13)
...filter/map/group_by operations...

.post(box pkt {
egress_check! {
input: pkt,
order :[EthHdr=>Ipv6Hdr=>Icmpv6PktTooBig<...>],

checks: [(checksum[Icmpv6PktTooBig] , neq, checksum[TcpHdr<Ipv6Hdr>]),

order is checked
statically via a trace of
packet contents

(payload_len[Ipv6Hdr] , ==, 1240),
(src[IpvbHdr] , ==, dst[Ipv6Hdr]),
(dst[Ipv6Hdr] , ==, src[Ipv6Hdr]),
(.src[EthHdr] , ==, .dst[EthHdr]),
(.dst[EthHdr] , ==, .src[EthHdr])]

31

Lakhani/Miller Checking-in on Network Functions

............

.............

............

.In Action:‘f

#[check (IPV6_MIN_MTU = 1280)]
fn send_too_big {
.pre(box pkt {
ingress_check! {
input: pkt,
order : [EthHdr=>Ipv6Hdr=>TcpHdr<Ipv6Hdr>],
checks: [(payload_len[Ipv6Hdr] , >, IPV6_MIN_MTU)]

order is checked
statically via a trace of
packet contents

139,

...filter/map/group_by operations... . . i
sost(box pkt ¢ pre-checks validate incoming

egress_check! { contents and store contents @ runtime

input: pkt,
order :[EthHdr=>Ipv6Hdr=>Icmpv6PktTooBig<...>],

checks: [(checksum[Icmpv6PktTooBig] , neq, checksum[TcpHdr<Ipv6Hdr>]),

(payload_len[Ipv6Hdr] , ==, 1240),
(src[IpveHdr] , ==, dst[Ipv6Hdr]),
(dst[Ipv6Hdr] , ==, src[Ipv6Hdr]),
(.src[EthHdr] , ==, .dst[EthHdr]),
(.dst[EthHdr] , ==, .src[EthHdr])]

31

Lakhani/Miller Checking-in on Network Functions

............

.............

............

.In Action:‘f

#[check (IPV6_MIN_MTU = 1280)]
fn send_too_big {
.pre(box pkt {
ingress_check! {
input: pkt,
order : [EthHdr=>Ipv6Hdr=>TcpHdr<Ipv6Hdr>],
checks: [(payload_len[Ipv6Hdr] , >, IPV6_MIN_MTU)]

order is checked
statically via a trace of
packet contents

139,

...filter/map/group_by operations... . . i
sost(box pkt ¢ pre-checks validate incoming

egress_check! { contents and store contents @ runtime

input: pkt,
order :[EthHdr=>Ipv6Hdr=>Icmpv6PktTooBig<...>],

checks: [(checksum[Icmpv6PktTooBig] , neq, checksum[TcpHdr<Ipv6Hdr>]),
(payload_len[Ipv6Hdr] , ==, 1240),

post-checks validate transformed (Y~ dstlIpveHdrl),
contents against pre-check contents (R -~ SrcllpvéHdrl),
(.src[EthHdr] , ==, .dst[EthHdr]),

(.dst[EthHdr] , ==, .src[EthHdr])]

31

Lakhani/Miller Checking-in on Network Functions

............

............

Evaluation -

Lakhani/Miller

............

Setup In our experimental setup, we ran NetBricks within
an Ubuntu Docker container on a local VirtualBox VM. Net-
Bricks uses DPDK [29] for fast packet I/O, which we have
properly set up within the VM and container. We used Moon-
Gen [10] to generate varying packet captures (pcaps) for our
testing and evaluation harness. We looked at three factors
in evaluating our technique for the design of NFs: (i.) addi-
tional syntax (LoC—lines of code); (ii.) compilation-time
added to our two example NFs; (iii.) and runtime overhead
of ingress and egress contract generation.

Checking-in on Network Functions

14

............

............

Evaluation -

Lakhani/Miller

............

| Design Phase |

Setup In our experimental setup, we ran NetBricks within
an Ubuntu Docker container on a local VirtualBox VM. Net-
Bricks uses DPDK [29] for fast packet I/O, which we have
properly set up within the VM and container. We used Moon-
Gen [10] to generate varying packet captures (pcaps) for our
testing and evaluation harness. We looked at three factors
in evaluating our technique for the design of NFs: (i.) addi-
tional syntax (LoC—lines of code); (ii.) compilation-time
added to our two example NFs; (iii.) and runtime overhead
of ingress and egress contract generation.

Checking-in on Network Functions

14

............

............

............

Evaluation: Syntax Added ™

............

‘ LoC run ‘ lang ‘ files | lines ‘ code ‘
mtu-too-big: Contracts ON rust 2 214 183
mtu-too-big: Contracts OFF rust 2 189 158
mtu-too-big: Contracts ON toml 1 19 16
mtu-too-big: Contracts OFF toml 1 16 13
mtu-too-big: Contracts ON total 3 233 199
mtu-too-big: Contracts OFF total 3 205 171

‘ Change ‘ ‘ 0 | +28 | +28 ‘

Lakhani/Miller Checking-in on Network Functions

............

............

Evaluation: Compilation Time~

Lakhani/Miller

............

compile times / cargo build | example mean (s) | stddev (s) | user (s) | system (s) | min (s) | max (s)
Contracts - Off srv6-change-pkt | 26.039 3.286 0.631 10.715 22.330 | 33.230
Contracts - On srv6-change-pkt | 25.099 2.398 0.549 11.697 20.238 | 28.220
Effect -0.94 -0.888 -0.082 +(0.982 -2.092 | -5.01
Contracts - Off mtu-too-big 21.652 2.202 0.537 9.201 18.528 | 25.191
Contracts - On mtu-too-big 26.052 1.858 0.650 10.851 22.165 | 28.346
Effect +4.4 -0.344 +0.113 +1.65 +3.637 | +3.155

Checking-in on Network Functions

16

.........................

1

l

............

.......................

Evaluation: Runtime Cost™

.. Pre-Contract ->icmp_transf... post

Entire Run of NF - Send Too Big

pre (60.476%, 8656955 samples)

2 mirroring and tracing packet contents

2 runtime checks

sto rage over h ead

Lakhani/Miller Checking-in on Network Functions

............

1

l

Evaluation: Runtime Cost™

............

............

............

.. Pre-Contract

Entire Run of NF - Send Too Big
pre (60.476%, 8656955 samples)

runtime checks

Design P hase {p

Lakhani/Miller

2 storage overhead

Checking-in on Network Functions

\ 2 mirroring and tracing packet contents

->icmp_transf... post

............

............

.Future Worl(.cf

2> deployment models / running contracts in simulation / ClI
2 e.g. via Mininet / Containernet

2 (further) leverage static analysis of input programs

2 interactive feedback (many examples in Ul tooling and langs like EIm and Rust)
> program slicing

2 refinement via domain-specific heuristics and constraint solving

Lakhani/Miller Checking-in on Network Functions

............

............

In Practice——

Scoped Side Effects Typed Packets

Envelope : T < T : IpPacket >
) Header : TCP
) G

2 checksum

Lakhani/Miller Checking-in on Network Functions

.......................

............

2 we need better approaches to VERIFY and INTERACT with
network functions and packet processing program properties

2 here, we provide a HYBRID-APPROACH and implementation for

GRADUALLY checking and validating the arbitrary logic and

side effects by

2 COMBINING design by contract, static assertions and type-checking,
and code generation via macros

2 all without PENALIZING programmers at development time

Lakhani/Miller Checking-in on Network Functions

