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Background: Dragonfly in WPA3
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With MODP groups: hash-to-group

value = hash(pw, addrl, addr2)

P = value®-1/4

if P > 1: return P
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With MODP groups: hash-to-group

value = hash(pw, addrl, addr2)

Problem: value >=p
P = value

if P > 1] return P

In practice always true



With MODP groups: hash-to-group

value = hash(pw, addrl, addr2)
if value >= p: continue
P = value®-1/4

if P > 1: return P



With MODP groups: hash-to-group

for (counter = 1; counter < 256; counter++)
value = hash(pw, counter, addrl, addr2)
if value >= p: continue
P = value®@-D/a

if P > 1: return P



With MODP groups: hash-to-group

for (counter = 1; counter < 256; counter++)
value = hash(pw, counter, addrl, addr2)
if value >= p: continue
P = value®-1/4

if P > 1: return P

No timing leak countermeasures
despite warnings by IETF & CFRG!



With MODP groups: hash-to-group

for (counter = 1; counter < 256; counter++)

value = hash(pw, counter, |addrl, addr2)]

1 value >= P \WPA3: spoof client address

_ -1)/ i '
P = value®™" 5 gbtain different executions
if P > 1: return »

No timing leak countermeasures
despite warnings by IETF & CFRG!
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Raspberry Pi 1 B+: differences are measurable
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Raspberry Pi 1 B+: differences are measurable
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Hostap (WPA3): ~75 measurements / address
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Leaked information: #iterations needed
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Leaked information: #iterations needed
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Leaked information: #iterations needed
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Leaked information: #iterations needed
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Leaked information: #iterations needed

Client address

addrA addrB addrC

Measured

Password 3

18



Leaked information: #iterations needed

Client address

Measured

... forms a signature of the password

— B~

Need ~17 addresses to test ~107 passwords
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What about elliptic curves?

Hash-to-group with elliptic curves also affected?
» By default Dragonfly uses NIST curves
» Timing leaks for NIST curves are mitigated

Dragonfly also supports Brainpool curves

» After our initial disclosure, the Wi-Fi Alliace private created
guidelines that mention these are secure to use

» Bad news: Brainpool curves in Dragonfly are insecure
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Hash-to-curve

value = hash(pw,

value

X
|

y = sqrt(x*3 + a * x + b)
return (x, y)

addrl, addr2)

21



Hash-to-curve

value = hash(pw, addrl, addr2)
Problem: no solution fory
X = value

y = sqrt(x*3 + a * x + b)
return (x, y)
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Hash-to-curve

value = hash(pw, addrl, addr2)
y sgr = value”3 + a * value + b
if is quadratic _residue(y sqr)

X = value

y = sqrt(x*3 + a * x + b)
return (x, y)
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Hash-to-curve

for (counter = 1; not Xx; counter++)
value = hash(pw, counter, addrl, addr2)

y sgr = value”3 + a * value + b
if is_quadratic_residue(y_sqr)
X = value

y = sqrt(x*3 + a * x + b)
return (x, y)
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Hash-to-curve

for (counter = 1; not Xx; counter++)
value = hash(pw, counter, addrl, addr2)

y_* Problem: different passwords

W Wl mia W

y = sqrt(x*3 + a * x + b)
return (x, y)
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Hash-to-curve

for (counter
value =

y_sqr =
if is qu
X =

y = sqrt(x”3
return (x, y

= 1; counter < k or not x; counter++)
hash(pw, counter, addrl, addr2)

value”3 + a * value + b
adratic residue(y_sgr) and not x:
value

- Always execute at
least k iterations
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Hash-to-curve

for (counter = 1; counter < k or not x; counter++)
value = hash(pw, counter, addrl, addr2)

y sgr = value”3 + a * value + b
if is _quadratic_residue(y sqr) and not x:

X = value :
In case quadratic test

pw = random() , _
IS NOt constant time

y = sgrt(x*3 + a * x +

return (x, y)
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Hash-to-curve

for (counter = 1; counter < k or not x; counter++)
value = hash(pw, counter, addrl, addr2)

y_sdqr = Problem: value >=p
if iS_QUauraL¢L_rc>¢uuC\y_>qr} and not Xx:

X = value

pw = random()
y = sqrt(x*3 + a * x + b)
return (x, y)
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Hash-to-curve

for (counter = 1; cou May be true for counter++)
value = hash(pw, Brainpoolcurves! pny)
if value >= p: continue
y _sgr = value”3 + a * value + b
if is quadratic _residue(y _sqr) and not x:
X = value
pw = random()
y = sqrt(x®"3 + a * x + b)
return (X, y)
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Hash-to-curve

for (counter = 1; cou
value = hash(pw,

May be true for counter++)
Brainpool curves! pp)

if value >= p: continue

y _sqr = value”3 + a * value + b

if is quadratic _residue(y _sqr) and not x:

X = value
pw = random()

Quadratic test may be skipped

y = sqrt(x®"3 + a * x + b)

return (X, y)
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Hash-to-curve

for (counter = 1; cou May be true for counter++)
value = hash(pw, Brainpoolcurves! pny)

if value >= p: continue
y _sqr = value”3 + a * value + b

if is quadratic _residue(y _sqr) and not x:

X = value Quadratic test may be skipped

pw = random()

Y A random #(extra iterations)
™ have atoo big hash output
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Influence of extra iterations

Execution 1
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Influence of extra iterations

Execution 1 Execution 2 Execution 3

Execution 4
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Influence of extra iterations

Execution 1

Execution 2

Execution 3

Execution 4
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Influence of extra iterations

Execution 1 Execution 2 Execution 3 Execution 4

INRE

¢ Variance ~ when password element was found
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Influence of extra iterations

Execution 1 Execution 2 Execution 3 Execution 4

INRE

¢ Variance ~ when password element was found
iAverage ~ when found and #iterations with big hash
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Influence of extra iterations

Execution 1 Execution 2 Execution 3 Execution 4

INRE

¢ Variance ~ when password element was found
iAverage ~ when found and #iterations with big hash

- Again forms a signature of the password
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Raspberry Pi 1 B+
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Raspberry Pi 1 B+
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Hash-to-curve: Quadratic Residue

for (counter = 1; counter < k or not x; counter++)
value = hash(pw, counter, addrl, addr2)
if value >= p: continue
y sgr = value”3 + a * value + b
if is quadratic_residue(y sqr) and not x:
X = value

NIST curves: use Flush+Reload to
~ detect If code Is executed in 15t iteration

41



Hash-to-curve: Qu. Use as clock to detect In
for (counter = 1;  Which iteration we are

value = hash(pw, counter, addrl, addr2)

if value >= p: continue

y sgr = value”3 + a * value + b

if is quadratic_residue(y sqr) and not x:
X = value

NIST curves: use Flush+Reload to
~ detect If code Is executed in 15t iteration
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Hash-to-curve: Bre Use as clock to detect In
for (counter = 1;  Which iteration we are

value = hash(pw, counter, addrl, addr2)
if value >= p: continue

y _sgr = value”3 + a * value + b

iflis quadratic_residue(y _sqr) and not x:

Brainpool: use Flush+Reload to detect
y If code Is executed in 1st iteration
return (x, y)

)
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There’s a lot more!

Implementation-specific vulnerabilities
» Invalid curve attacks, reflection attacks, bad randomness

Wi-Fi specific attacks
» Downgrades to WPA2 & denial-of-service

Practical impact
» Brute-force attacks on GPUs: $1 for RockYou database
» 802.11 being updated to use Shallue-Woestijne-Ulas
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Thank you! Questions?

Lessons learned:

» Must be constant-time and efficient

» Allow offline computation of P

» Discuss impact of bad randomness

» Limit number of parameters (e.g. curves)

» Dragonfly is hard to implement securely

https://wpa3.mathyvanhoef.com
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