Dragonblood: Analyzing the Dragonfly
Handshake of WPA3 and EAP-pwd

Mathy Vanhoef and Eyal Ronen

KATHOLIEKE UNIVERSITEIT ((/
LEUVEN 2 NEW YORK UNIVERSITY
TEL AVIV UNIVERSITY '

Background: Dragonfly in WPA3

= Password Authenticated Key Exchange (PAKE)

Provide mutual
4
‘ authentication

Forward secrecy
" & prevent offline
dictionary attacks

=@ Negotiate

E/ session key

Dragonfly

Convert password to
elliptic curve point P

Convert password to
elliptic curve point P

Commit phase

A2

N

Confirm phase

v

N

With MODP groups: hash-to-group

value = hash(pw, addrl, addr2)

P = value®-1/4

if P > 1: return P

With MODP groups: hash-to-group

value = hash(pw, addrl, addr2)

P = value®~1)/a
In practice always true

With MODP groups: hash-to-group

value = hash(pw, addrl, addr2)

Problem: value >=p
P = value

if P > 1] return P

In practice always true

With MODP groups: hash-to-group

value = hash(pw, addrl, addr2)
if value >= p: continue
P = value®-1/4

if P > 1: return P

With MODP groups: hash-to-group

for (counter = 1; counter < 256; counter++)
value = hash(pw, counter, addrl, addr2)
if value >= p: continue
P = value®@-D/a

if P > 1: return P

With MODP groups: hash-to-group

for (counter = 1; counter < 256; counter++)
value = hash(pw, counter, addrl, addr2)
if value >= p: continue
P = value®-1/4

if P > 1: return P

No timing leak countermeasures
despite warnings by IETF & CFRG!

With MODP groups: hash-to-group

for (counter = 1; counter < 256; counter++)

value = hash(pw, counter, |addrl, addr2)]

1 value >= P \WPA3: spoof client address

_ -1)/ i '
P = value®™" 5 gbtain different executions
if P > 1: return »

No timing leak countermeasures
despite warnings by IETF & CFRG!

10

Raspberry Pi 1 B+: differences are measurable

— 1 iteration

2 iterations
—-= 3 jterations
4 iterations

= =
o Ul
]]

O
on
]

Density (relative)

o
o
]
:

63 67 68
Response time (ms)

Raspberry Pi 1 B+: differences are measurable

1.5 - -—] [teration
2 iterations

—_—= 2 taratinnce

itive)

Hostap (WPA3): ~75 measurements / address
iwd (EAP-pwd): ~30 measurements / address
o.oL/ — =
66 67 68

63 64 65
Response time (ms)

12

Leaked information: #iterations needed

Client address addrA

.
Measured D

13

Leaked information: #iterations needed

Client address addrA

Measured

Password 1

Password 2

Password 3

14

Leaked information: #iterations needed

Client address addrA

Measured

Password 2

Password 3

15

Leaked information: #iterations needed

Client address addrA addrB
Measured = .
o 1 GD

Password 2 =

Password 3 =

16

Leaked information: #iterations needed

Client address addrA addrB
D D
Measured D
D
Password-1
D
Password-2 D
D
Password 3 .

17

Leaked information: #iterations needed

Client address

addrA addrB addrC

Measured

Password 3

18

Leaked information: #iterations needed

Client address

Measured

... forms a signature of the password

— B~

Need ~17 addresses to test ~107 passwords

1 CAII VY JIT A W

19

What about elliptic curves?

Hash-to-group with elliptic curves also affected?
» By default Dragonfly uses NIST curves
» Timing leaks for NIST curves are mitigated

Dragonfly also supports Brainpool curves

» After our initial disclosure, the Wi-Fi Alliace private created
guidelines that mention these are secure to use

» Bad news: Brainpool curves in Dragonfly are insecure

20

Hash-to-curve

value = hash(pw,

value

X
|

y = sqrt(x*3 + a * x + b)
return (x, y)

addrl, addr2)

21

Hash-to-curve

value = hash(pw, addrl, addr2)
Problem: no solution fory
X = value

y = sqrt(x*3 + a * x + b)
return (x, y)

22

Hash-to-curve

value = hash(pw, addrl, addr2)
y sgr = value”3 + a * value + b
if is quadratic _residue(y sqr)

X = value

y = sqrt(x*3 + a * x + b)
return (x, y)

23

Hash-to-curve

for (counter = 1; not Xx; counter++)
value = hash(pw, counter, addrl, addr2)

y sgr = value”3 + a * value + b
if is_quadratic_residue(y_sqr)
X = value

y = sqrt(x*3 + a * x + b)
return (x, y)

24

Hash-to-curve

for (counter = 1; not Xx; counter++)
value = hash(pw, counter, addrl, addr2)

y_* Problem: different passwords

W Wl mia W

y = sqrt(x*3 + a * x + b)
return (x, y)

25

Hash-to-curve

for (counter
value =

y_sqr =
if is qu
X =

y = sqrt(x”3
return (x, y

= 1; counter < k or not x; counter++)
hash(pw, counter, addrl, addr2)

value”3 + a * value + b
adratic residue(y_sgr) and not x:
value

- Always execute at
least k iterations

26

Hash-to-curve

for (counter = 1; counter < k or not x; counter++)
value = hash(pw, counter, addrl, addr2)

y sgr = value”3 + a * value + b
if is _quadratic_residue(y sqr) and not x:

X = value :
In case quadratic test

pw = random() , _
IS NOt constant time

y = sgrt(x*3 + a * x +

return (x, y)
27

Hash-to-curve

for (counter = 1; counter < k or not x; counter++)
value = hash(pw, counter, addrl, addr2)

y_sdqr = Problem: value >=p
if iS_QUauraL¢L_rc>¢uuC\y_>qr} and not Xx:

X = value

pw = random()
y = sqrt(x*3 + a * x + b)
return (x, y)

28

Hash-to-curve

for (counter = 1; cou May be true for counter++)
value = hash(pw, Brainpoolcurves! pny)
if value >= p: continue
y _sgr = value”3 + a * value + b
if is quadratic _residue(y _sqr) and not x:
X = value
pw = random()
y = sqrt(x®"3 + a * x + b)
return (X, y)

29

Hash-to-curve

for (counter = 1; cou
value = hash(pw,

May be true for counter++)
Brainpool curves! pp)

if value >= p: continue

y _sqr = value”3 + a * value + b

if is quadratic _residue(y _sqr) and not x:

X = value
pw = random()

Quadratic test may be skipped

y = sqrt(x®"3 + a * x + b)

return (X, y)

30

Hash-to-curve

for (counter = 1; cou May be true for counter++)
value = hash(pw, Brainpoolcurves! pny)

if value >= p: continue
y _sqr = value”3 + a * value + b

if is quadratic _residue(y _sqr) and not x:

X = value Quadratic test may be skipped

pw = random()

Y A random #(extra iterations)
™ have atoo big hash output

31

Influence of extra iterations

Execution 1

32

Influence of extra iterations

Execution 1 Execution 2 Execution 3

Execution 4

33

Influence of extra iterations

Execution 1

Execution 2

Execution 3

Execution 4

34

Influence of extra iterations

Execution 1 Execution 2 Execution 3 Execution 4

INRE

¢ Variance ~ when password element was found

35

Influence of extra iterations

Execution 1 Execution 2 Execution 3 Execution 4

INRE

¢ Variance ~ when password element was found
iAverage ~ when found and #iterations with big hash

36

Influence of extra iterations

Execution 1 Execution 2 Execution 3 Execution 4

INRE

¢ Variance ~ when password element was found
iAverage ~ when found and #iterations with big hash

- Again forms a signature of the password

37

Raspberry Pi 1 B+

—_— 12/19 iter.
~ 0:06 1/1 iter.
IS —.= 4/4 iter.
f{ 0.044 L e 0/2 iter.
>
&

C 0.02 -
a
000 o e = et T LT ™ w2 v o,

180 200 220 240 260
Response time (ms)

Raspberry Pi 1 B+

— 12/19 iter.

g 0% 1/1 iter.
© —-- 4/4 iter.
L 0.
g Hostap (WPAS3):
w ~300 measurements / address
8 L//'

1 o0 Lusacad MMM T~ - -

180 200 220 240 260
Response time (ms) 39

> Cache
® Attacks

Hash-to-curve: Quadratic Residue

for (counter = 1; counter < k or not x; counter++)
value = hash(pw, counter, addrl, addr2)
if value >= p: continue
y sgr = value”3 + a * value + b
if is quadratic_residue(y sqr) and not x:
X = value

NIST curves: use Flush+Reload to
~ detect If code Is executed in 15t iteration

41

Hash-to-curve: Qu. Use as clock to detect In
for (counter = 1; Which iteration we are

value = hash(pw, counter, addrl, addr2)

if value >= p: continue

y sgr = value”3 + a * value + b

if is quadratic_residue(y sqr) and not x:
X = value

NIST curves: use Flush+Reload to
~ detect If code Is executed in 15t iteration

42

Hash-to-curve: Bre Use as clock to detect In
for (counter = 1; Which iteration we are

value = hash(pw, counter, addrl, addr2)
if value >= p: continue

y _sgr = value”3 + a * value + b

iflis quadratic_residue(y _sqr) and not x:

Brainpool: use Flush+Reload to detect
y If code Is executed in 1st iteration
return (x, y)

)

43

There’s a lot more!

Implementation-specific vulnerabilities
» Invalid curve attacks, reflection attacks, bad randomness

Wi-Fi specific attacks
» Downgrades to WPA2 & denial-of-service

Practical impact
» Brute-force attacks on GPUs: $1 for RockYou database
» 802.11 being updated to use Shallue-Woestijne-Ulas

44

Thank you! Questions?

Lessons learned:

» Must be constant-time and efficient

» Allow offline computation of P

» Discuss impact of bad randomness

» Limit number of parameters (e.g. curves)

» Dragonfly is hard to implement securely

https://wpa3.mathyvanhoef.com

45

https://wpa3.mathyvanhoef.com/

