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With MODP groups: hash-to-group

for (counter = 1; counter < 256; counter++)

value = hash(pw, counter, addr1, addr2)

if value >= p: continue

P = 𝑣𝑎𝑙𝑢𝑒(𝑝−1)/𝑞

if P > 1: return P
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In practice always true
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In practice always true

Problem: value >= p
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No timing leak countermeasures

despite warnings by IETF & CFRG!
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No timing leak countermeasures

despite warnings by IETF & CFRG!

WPA3: spoof client address

to obtain different executions



Raspberry Pi 1 B+: differences are measurable
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Raspberry Pi 1 B+: differences are measurable
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Hostap (WPA3): ~75 measurements / address

iwd (EAP-pwd): ~30 measurements / address



Leaked information: #iterations needed
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Leaked information: #iterations needed
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Measured

Password 1
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forms a signature of the password

Need ~17 addresses to test ~107 passwords



What about elliptic curves?

Hash-to-group with elliptic curves also affected?

› By default Dragonfly uses NIST curves

› Timing leaks for NIST curves are mitigated
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Dragonfly also supports Brainpool curves

› After our initial disclosure, the Wi-Fi Alliace private created 

guidelines that mention these are secure to use

› Bad news: Brainpool curves in Dragonfly are insecure



Hash-to-curve

for (counter = 1; counter < k or not x; counter++)

value = hash(pw, counter, addr1, addr2)

if value >= p: continue

y_sqr = value^3 + a * value + b

if is_quadratic_residue(y_sqr) and not x:

x = value

pw = random()

y = sqrt(x^3 + a * x + b)

return (x, y)
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Problem: no solution for y
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Problem: different passwords 

have different execution time
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 Always execute at 

least k iterations
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In case quadratic test 

is not constant time
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Problem: value >= p
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Brainpool curves!
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May be true for 

Brainpool curves!

Quadratic test may be skipped
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May be true for 

Brainpool curves!

Quadratic test may be skipped

A random #(extra iterations) 

have a too big hash output



Influence of extra iterations
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Variance ~ when password element was found
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Influence of extra iterations
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Execution 1 Execution 2 Execution 3 Execution 4

Variance ~ when password element was found

Average ~ when found and #iterations with big hash

 Again forms a signature of the password



Raspberry Pi 1 B+
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Raspberry Pi 1 B+
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Hostap (WPA3):

~300 measurements / address



40

Cache 

Attacks



Hash-to-curve: Quadratic Residue
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NIST curves: use Flush+Reload to 

detect if code is executed in 1st iteration
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NIST curves: use Flush+Reload to 

detect if code is executed in 1st iteration

Use as clock to detect in 

which iteration we are



Hash-to-curve: Brainpool big hash
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Brainpool: use Flush+Reload to detect 

if code is executed in 1st iteration

Use as clock to detect in 

which iteration we are



There’s a lot more!

Implementation-specific vulnerabilities

› Invalid curve attacks, reflection attacks, bad randomness

Wi-Fi specific attacks

› Downgrades to WPA2 & denial-of-service

Practical impact

› Brute-force attacks on GPUs: $1 for RockYou database

› 802.11 being updated to use Shallue-Woestijne-Ulas
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Thank you! Questions?

Lessons learned:

› Must be constant-time and efficient

› Allow offline computation of P

› Discuss impact of bad randomness

› Limit number of parameters (e.g. curves)

› Dragonfly is hard to implement securely

https://wpa3.mathyvanhoef.com
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https://wpa3.mathyvanhoef.com/

