
Dragonblood: Analyzing the Dragonfly

Handshake of WPA3 and EAP-pwd

Mathy Vanhoef and Eyal Ronen

ANRW. Montreal, Canada, 22 July 2019.

Background: Dragonfly in WPA3

2

Negotiate

session key
Provide mutual

authentication

Forward secrecy
& prevent offline
dictionary attacks

Protect against

server compromise

= Password Authenticated Key Exchange (PAKE)

Dragonfly

3

Convert password to

elliptic curve point P

Convert password to

elliptic curve point P

Commit phase

Confirm phase

With MODP groups: hash-to-group

for (counter = 1; counter < 256; counter++)

value = hash(pw, counter, addr1, addr2)

if value >= p: continue

P = 𝑣𝑎𝑙𝑢𝑒(𝑝−1)/𝑞

if P > 1: return P

4

With MODP groups: hash-to-group

for (counter = 1; counter < 256; counter++)

value = hash(pw, counter, addr1, addr2)

if value >= p: continue

P = 𝑣𝑎𝑙𝑢𝑒(𝑝−1)/𝑞

if P > 1: return P

5

In practice always true

With MODP groups: hash-to-group

for (counter = 1; counter < 256; counter++)

value = hash(pw, counter, addr1, addr2)

if value >= p: continue

P = 𝑣𝑎𝑙𝑢𝑒(𝑝−1)/𝑞

if P > 1: return P

6

In practice always true

Problem: value >= p

With MODP groups: hash-to-group

for (counter = 1; counter < 256; counter++)

value = hash(pw, counter, addr1, addr2)

if value >= p: continue

P = 𝑣𝑎𝑙𝑢𝑒(𝑝−1)/𝑞

if P > 1: return P

7

With MODP groups: hash-to-group

for (counter = 1; counter < 256; counter++)

value = hash(pw, counter, addr1, addr2)

if value >= p: continue

P = 𝑣𝑎𝑙𝑢𝑒(𝑝−1)/𝑞

if P > 1: return P

8

With MODP groups: hash-to-group

for (counter = 1; counter < 256; counter++)

value = hash(pw, counter, addr1, addr2)

if value >= p: continue

P = 𝑣𝑎𝑙𝑢𝑒(𝑝−1)/𝑞

if P > 1: return P

9

No timing leak countermeasures

despite warnings by IETF & CFRG!

With MODP groups: hash-to-group

for (counter = 1; counter < 256; counter++)

value = hash(pw, counter, addr1, addr2)

if value >= p: continue

P = 𝑣𝑎𝑙𝑢𝑒(𝑝−1)/𝑞

if P > 1: return P

10

No timing leak countermeasures

despite warnings by IETF & CFRG!

WPA3: spoof client address

to obtain different executions

Raspberry Pi 1 B+: differences are measurable

11

Raspberry Pi 1 B+: differences are measurable

12

Hostap (WPA3): ~75 measurements / address

iwd (EAP-pwd): ~30 measurements / address

Leaked information: #iterations needed

13

Client address addrA

Measured

Leaked information: #iterations needed

14

Client address addrA

Measured

Password 1

Password 2

Password 3

Leaked information: #iterations needed

15

Client address addrA

Measured

Password 1

Password 2

Password 3

Leaked information: #iterations needed

16

Client address addrA addrB

Measured

Password 1

Password 2

Password 3

Leaked information: #iterations needed

17

Client address addrA addrB

Measured

Password 1

Password 2

Password 3

Leaked information: #iterations needed

18

Client address addrA addrB addrC

Measured

Password 1

Password 2

Password 3

Leaked information: #iterations needed

19

Client address addrA addrB addrC

Measured

Password 1

Password 2

Password 3

forms a signature of the password

Need ~17 addresses to test ~107 passwords

What about elliptic curves?

Hash-to-group with elliptic curves also affected?

› By default Dragonfly uses NIST curves

› Timing leaks for NIST curves are mitigated

20

Dragonfly also supports Brainpool curves

› After our initial disclosure, the Wi-Fi Alliace private created

guidelines that mention these are secure to use

› Bad news: Brainpool curves in Dragonfly are insecure

Hash-to-curve

for (counter = 1; counter < k or not x; counter++)

value = hash(pw, counter, addr1, addr2)

if value >= p: continue

y_sqr = value^3 + a * value + b

if is_quadratic_residue(y_sqr) and not x:

x = value

pw = random()

y = sqrt(x^3 + a * x + b)

return (x, y)
21

Hash-to-curve

for (counter = 1; counter < k or not x; counter++)

value = hash(pw, counter, addr1, addr2)

if value >= p: continue

y_sqr = value^3 + a * value + b

if is_quadratic_residue(y_sqr) and not x:

x = value

pw = random()

y = sqrt(x^3 + a * x + b)

return (x, y)
22

Problem: no solution for y

Hash-to-curve

for (counter = 1; counter < k or not x; counter++)

value = hash(pw, counter, addr1, addr2)

if value >= p: continue

y_sqr = value^3 + a * value + b

if is_quadratic_residue(y_sqr) and not x:

x = value

pw = random()

y = sqrt(x^3 + a * x + b)

return (x, y)
23

Hash-to-curve

for (counter = 1; counter < k or not x; counter++)

value = hash(pw, counter, addr1, addr2)

if value >= p: continue

y_sqr = value^3 + a * value + b

if is_quadratic_residue(y_sqr) and not x:

x = value

pw = random()

y = sqrt(x^3 + a * x + b)

return (x, y)
24

Hash-to-curve

for (counter = 1; counter < k or not x; counter++)

value = hash(pw, counter, addr1, addr2)

if value >= p: continue

y_sqr = value^3 + a * value + b

if is_quadratic_residue(y_sqr) and not x:

x = value

pw = random()

y = sqrt(x^3 + a * x + b)

return (x, y)
25

Problem: different passwords

have different execution time

Hash-to-curve

for (counter = 1; counter < k or not x; counter++)

value = hash(pw, counter, addr1, addr2)

if value >= p: continue

y_sqr = value^3 + a * value + b

if is_quadratic_residue(y_sqr) and not x:

x = value

pw = random()

y = sqrt(x^3 + a * x + b)

return (x, y)
26

 Always execute at

least k iterations

Hash-to-curve

for (counter = 1; counter < k or not x; counter++)

value = hash(pw, counter, addr1, addr2)

if value >= p: continue

y_sqr = value^3 + a * value + b

if is_quadratic_residue(y_sqr) and not x:

x = value

pw = random()

y = sqrt(x^3 + a * x + b)

return (x, y)
27

In case quadratic test

is not constant time

Hash-to-curve

for (counter = 1; counter < k or not x; counter++)

value = hash(pw, counter, addr1, addr2)

if value >= p: continue

y_sqr = value^3 + a * value + b

if is_quadratic_residue(y_sqr) and not x:

x = value

pw = random()

y = sqrt(x^3 + a * x + b)

return (x, y)
28

Problem: value >= p

Hash-to-curve

for (counter = 1; counter < k or not x; counter++)

value = hash(pw, counter, addr1, addr2)

if value >= p: continue

y_sqr = value^3 + a * value + b

if is_quadratic_residue(y_sqr) and not x:

x = value

pw = random()

y = sqrt(x^3 + a * x + b)

return (x, y)
29

May be true for

Brainpool curves!

Hash-to-curve

for (counter = 1; counter < k or not x; counter++)

value = hash(pw, counter, addr1, addr2)

if value >= p: continue

y_sqr = value^3 + a * value + b

if is_quadratic_residue(y_sqr) and not x:

x = value

pw = random()

y = sqrt(x^3 + a * x + b)

return (x, y)
30

May be true for

Brainpool curves!

Quadratic test may be skipped

Hash-to-curve

for (counter = 1; counter < k or not x; counter++)

value = hash(pw, counter, addr1, addr2)

if value >= p: continue

y_sqr = value^3 + a * value + b

if is_quadratic_residue(y_sqr) and not x:

x = value

pw = random()

y = sqrt(x^3 + a * x + b)

return (x, y)
31

May be true for

Brainpool curves!

Quadratic test may be skipped

A random #(extra iterations)

have a too big hash output

Influence of extra iterations

32

Execution 1

Influence of extra iterations

33

Execution 1 Execution 2 Execution 3 Execution 4

Influence of extra iterations

34

Execution 1 Execution 2 Execution 3 Execution 4

Influence of extra iterations

35

Execution 1 Execution 2 Execution 3 Execution 4

Variance ~ when password element was found

Influence of extra iterations

36

Execution 1 Execution 2 Execution 3 Execution 4

Variance ~ when password element was found

Average ~ when found and #iterations with big hash

Influence of extra iterations

37

Execution 1 Execution 2 Execution 3 Execution 4

Variance ~ when password element was found

Average ~ when found and #iterations with big hash

 Again forms a signature of the password

Raspberry Pi 1 B+

38

Raspberry Pi 1 B+

39

Hostap (WPA3):

~300 measurements / address

40

Cache

Attacks

Hash-to-curve: Quadratic Residue

for (counter = 1; counter < k or not x; counter++)

value = hash(pw, counter, addr1, addr2)

if value >= p: continue

y_sqr = value^3 + a * value + b

if is_quadratic_residue(y_sqr) and not x:

x = value

pw = random()

y = sqrt(x^3 + a * x + b)

return (x, y)
41

NIST curves: use Flush+Reload to

detect if code is executed in 1st iteration

Hash-to-curve: Quadratic Residue

for (counter = 1; counter < k or not x; counter++)

value = hash(pw, counter, addr1, addr2)

if value >= p: continue

y_sqr = value^3 + a * value + b

if is_quadratic_residue(y_sqr) and not x:

x = value

pw = random()

y = sqrt(x^3 + a * x + b)

return (x, y)
42

NIST curves: use Flush+Reload to

detect if code is executed in 1st iteration

Use as clock to detect in

which iteration we are

Hash-to-curve: Brainpool big hash

for (counter = 1; counter < k or not x; counter++)

value = hash(pw, counter, addr1, addr2)

if value >= p: continue

y_sqr = value^3 + a * value + b

if is_quadratic_residue(y_sqr) and not x:

x = value

pw = random()

y = sqrt(x^3 + a * x + b)

return (x, y)
43

Brainpool: use Flush+Reload to detect

if code is executed in 1st iteration

Use as clock to detect in

which iteration we are

There’s a lot more!

Implementation-specific vulnerabilities

› Invalid curve attacks, reflection attacks, bad randomness

Wi-Fi specific attacks

› Downgrades to WPA2 & denial-of-service

Practical impact

› Brute-force attacks on GPUs: $1 for RockYou database

› 802.11 being updated to use Shallue-Woestijne-Ulas

44

Thank you! Questions?

Lessons learned:

› Must be constant-time and efficient

› Allow offline computation of P

› Discuss impact of bad randomness

› Limit number of parameters (e.g. curves)

› Dragonfly is hard to implement securely

https://wpa3.mathyvanhoef.com
45

https://wpa3.mathyvanhoef.com/

