Dragonblood: Analyzing the Dragonfly Handshake of WPA3 and EAP-pwd

Mathy Vanhoef and Eyal Ronen

ANRW. Montreal, Canada, 22 July 2019.

Background: Dragonfly in WPA3

= Password Authenticated Key Exchange (PAKE)

Provide mutual authentication

Negotiate session key

Forward secrecy & prevent offline dictionary attacks

Protect against server compromise

Dragonfly


```
for (counter = 1; counter < 256; counter++)
  value = hash(pw, counter, addr1, addr2)
  if value >= p: continue
  P = value<sup>(p-1)/q</sup>
  if P > 1: return P
```

```
value = hash(pw, counter, addr1, addr2)
P = value^{(p-1)/q}
if P > 1 return P
```

In practice always true

```
value = hash(pw, counter, addr1, addr2)
if value
         Problem: value >= p
P = value
if P > 1 return P
 In practice always true
```

```
for (counter = 1; counter < 256; counter++)
  value = hash(pw, counter, addr1, addr2)
  if value >= p: continue
  P = value<sup>(p-1)/q</sup>
  if P > 1: return P
```

```
for (counter = 1; counter < 256; counter++)

value = hash(pw, counter, addr1, addr2)

if value >= p: continue

P = value^{(p-1)/q}

if P > 1: return P
```

```
for (counter = 1; counter < 256; counter++)
  value = hash(pw, counter, addr1, addr2)
  if value >= p: continue
  P = value<sup>(p-1)/q</sup>
  if P > 1: return P
```

No timing leak countermeasures despite warnings by IETF & CFRG!

```
for (counter = 1; counter < 256; counter++)

value = hash(pw, counter, addr1, addr2)

if value >= p

P = value(p-1)/

to obtain different executions

if P > 1: return P
```

No timing leak countermeasures despite warnings by IETF & CFRG!

Raspberry Pi 1 B+: differences are measurable

Raspberry Pi 1 B+: differences are measurable

Client address	addrA	
Measured		
Password 1		
Password 2		
Password 3		

Client address	addrA	
Measured		
Password 1		
Password 2		
Password 3		

Client address	addrA	addrB
Measured		
Password 1		
Password 2		
Password 3		

Client address	addrA	addrB
Measured		
Password 1		
Password 2		
Password 3		

Client address	addrA	addrB	addrC
Measured			
Password 1			
Password 2			
Password 3			

What about elliptic curves?

Hash-to-group with elliptic curves also affected?

- By default Dragonfly uses NIST curves
- > Timing leaks for NIST curves are mitigated

Dragonfly also supports Brainpool curves

- After our initial disclosure, the Wi-Fi Alliace private created guidelines that mention these are secure to use
- > Bad news: Brainpool curves in Dragonfly are insecure

```
value = hash(pw, counter, addr1, addr2)
        x = value
y = sqrt(x^3 + a * x + b)
return (x, y)
```

```
value = hash(pw, counter, addr1, addr2)
   Problem: no solution for y
   if is quadratic residue(y sqr) and not X:
       x = value
y = sqrt(x^3 + a * x + b)
return (x, y)
```

```
value = hash(pw, counter, addr1, addr2)
    y sqr = value^3 + a * value + b
    if is quadratic residue(y sqr) and not x:
        x = value
y = sqrt(x^3 + a * x + b)
return (x, y)
```

```
for (counter = 1; counter < k or not x; counter++)
    value = hash(pw, counter, addr1, addr2)
    y sqr = value^3 + a * value + b
    if is quadratic residue(y sqr) and not x:
        x = value
y = sqrt(x^3 + a * x + b)
return (x, y)
```

```
for (counter = 1; counter < k or not x; counter++)</pre>
   value = hash(pw, counter, addr1, addr2)
   y_s Problem: different passwords
   have different execution time
y = sqrt(x^3 + a * x + b)
return (x, y)
```

```
for (counter = 1; counter < k or not x; counter++)</pre>
    value = hash(pw, counter, addr1, addr2)
    y sqr = value^3 + a * value + b
    if is quadratic residue(y_sqr) and not x:
        x = value
y = sqrt(x^3) \rightarrow Always execute at
                least k iterations
return (x, y
```

```
for (counter = 1; counter < k or not x; counter++)</pre>
    value = hash(pw, counter, addr1, addr2)
    y sqr = value^3 + a * value + b
    if is quadratic residue(y_sqr) and not x:
        x = value
                       In case quadratic test
       pw = random()
                       is not constant time
y = sqrt(x^3 + a * x +
return (x, y)
```

```
for (counter = 1; counter < k or not x; counter++)
    value = hash(pw, counter, addr1, addr2)
   y_sqr = Problem: value >= p
    if is_quauracic_residue(y_sqr) and not x:
       x = value
        pw = random()
y = sqrt(x^3 + a * x + b)
return (x, y)
```

```
nt May be true for
for (counter = 1; cou
                                         counter++)
                     Brainpool curves!
                                         r2)
    value = hash(pw,
   if value >= p: continue
    y sqr = value^3 + a * value + b
    if is quadratic residue(y sqr) and not x:
        x = value
        pw = random()
y = sqrt(x^3 + a * x + b)
return (x, y)
```

```
May be true for
for (counter = 1; cou
                                         counter++)
                       Brainpool curves!
                                         r2)
    value = hash(pw,
    if value >= p: continue
    y sqr = value^3 + a * value + b
   if is_quadratic_residue(y_sqr) and not x:
        x = value
                        Quadratic test may be skipped
        pw = random()
y = sqrt(x^3 + a * x + b)
return (x, y)
```

```
May be true for
for (counter = 1; cou
                                         counter++)
                      Brainpool curves!
                                         r2)
    value = hash(pw,
    if value >= p: continue
    y sqr = value^3 + a * value + b
   if is_quadratic_residue(y_sqr) and not x:
        x = value
                        Quadratic test may be skipped
        pw = random()
```

A random #(extra iterations)
have a too big hash output

Raspberry Pi 1 B+

Raspberry Pi 1 B+

Cache Attacks

Hash-to-curve: Quadratic Residue

```
for (counter = 1; counter < k or not x; counter++)</pre>
    value = hash(pw, counter, addr1, addr2)
    if value >= p: continue
    y sqr = value^3 + a * value + b
    if is_quadratic_residue(y_sqr) and not x:
        x = value
```

NIST curves: use Flush+Reload to detect if code is executed in 1st iteration

Hash-to-curve: Qu Use as clock to detect in for (counter = 1; which iteration we are value = hash(pw, counter, addr1, addr2) if value >= p: continue $y sqr = value^3 + a * value + b$ if is_quadratic_residue(y_sqr) and not x:

NIST curves: use Flush+Reload to detect if code is executed in 1st iteration

x = value

Hash-to-curve: Bra Use as clock to detect in for (counter = 1; which iteration we are value = hash(pw, counter, addr1, addr2) if value >= p: continue $y_sqr = value^3 + a * value + b$ if is_quadratic_residue(y_sqr) and not x:

Brainpool: use Flush+Reload to detect if code is executed in 1st iteration

```
return (x, y)
```

There's a lot more!

Implementation-specific vulnerabilities

> Invalid curve attacks, reflection attacks, bad randomness

Wi-Fi specific attacks

Downgrades to WPA2 & denial-of-service

Practical impact

- > Brute-force attacks on GPUs: \$1 for RockYou database
- > 802.11 being updated to use Shallue-Woestijne-Ulas

Thank you! Questions?

Lessons learned:

- Must be constant-time and efficient
- Allow offline computation of P
- Discuss impact of bad randomness
- > Limit number of parameters (e.g. curves)
- > Dragonfly is hard to implement securely

https://wpa3.mathyvanhoef.com