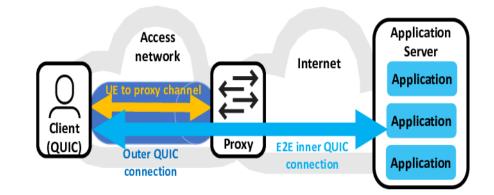
Cooperative Performance Enhancement Using QUIC Tunneling in 5G Cellular Networks

Zsolt Krämer, Budapest University of Technology and Economics (presenter) Mirja Kühlewind, Ericsson Research Marcus Ihlar, Ericsson Attila Mihály, Ericsson Research

Transport layer performance in 5G networks


- 5G deployments are going to introduce new characteristics to cellular networks:
 - Very high peak data rates
 - Significantly decreased delay
 - High volatility in available bandwidth
- Increased need for a shorter control loop and local optimizations
- In LTE networks, this has been implemented by PEPs (Performance Enhancing Proxies)

QUIC: Challenges of managing encrypted traffic

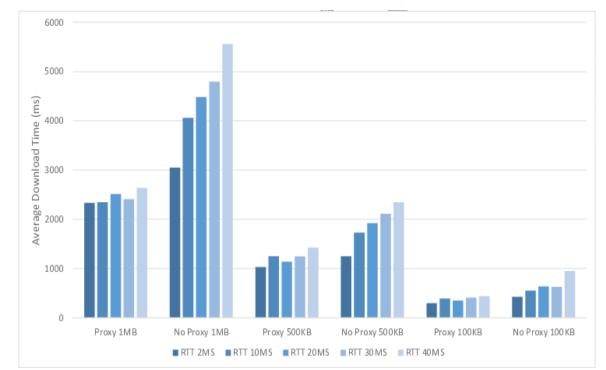
- Standardized recently as RFC 9000, and already widely deployed by Google
- Fully encrypted transport, resulting in enhanced privacy for users
- The end-to-end encryption makes connection-splitting solutions impossible
- A new approach is needed to enable network-assisted performance optimization for QUIC in cellular networks


Cooperative Performance Enhancement I

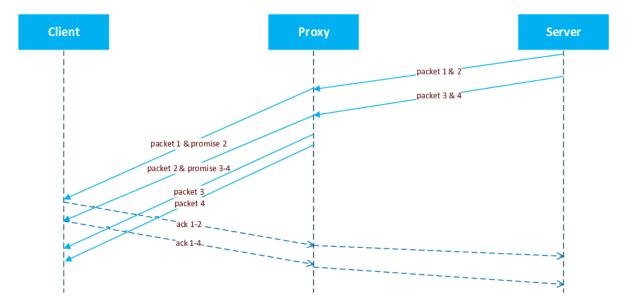
- Using MASQUE as the signaling protocol towards the proxy
- Two layers of connections:
 - QUIC tunnel between client and proxy
 - End-to-end QUIC connection between client and server

Cooperative Performance Enhancement II

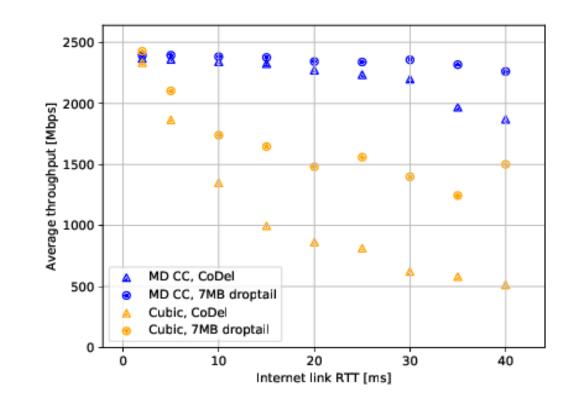
- The security context of the end-to-end connection is unmodified
- Explicit consent is required for requesting a service
- Separate QUIC streams for communication channel data and tunnel data



- Based on a different granularity of cooperation between the server, the client and the proxy
 - Local loss recovery
 - Promise signaling
 - Declarative messages to the server


Local loss recovery

- Using the reliable data stream service of the QUIC tunnel
- Besides the initial explicit request, no additional signaling is needed
- May improve the performance of Unacknowledged Mode (UM)


Promise signaling

- Useful if the bottleneck is between the client and the proxy
- A promise signal can indicate the reception of a packet by the proxy to the client
- The client can progressively acknowledge the "promised" packets

Declarative messages to the server

- Explicit cooperation between the proxy and the server
- Declarative, safe-to-ignore messages from the proxy, containing ACK/NACK info
- The server may apply a Multi-Domain congestion control algorithm
 - Two control loops for the wired and wireless domains
 - Provide fairness in the wired domain and fast utilization in the wireless domain

Conclusion and future work

- Transparent, connection-splitting PEPs are not feasible for QUIC traffic
- We propose a cooperative performance enhancing framework
 - Based on MASQUE
 - Explicit consensus by the endpoints
 - Unmodified security context of the original end-to-end connection
- Three different use-cases: local loss recovery, promise signaling, declarative messages to the server
- Promising early performance results
- Future work: Detailed performance evaluation in 4G/5G network conditions

