
Tools for Disambiguating RFCs
Jane Yen, Barath Raghavan, Ramesh Govindan

RFC production

YEAR 2016 2017 2018 2019 2020 2021

RFC
COUNT

310 263 208 180 209 240

Specification production

We need to standardize this
XYZ protocol.

Working Group

XYZ protocol uses three
way handshake…

Specification Author

Communication

Ambiguities

Ambiguous
Specification

Multiple
versions

Human
Interpretation

Classic examples

5

Classic examples

Ending at ?

6

Classic examples

Checksum the header Checksum both the header and payloadOR

Ending at ?

7

Possible Consequences

!

Buggy Implementation Security Vulnerability

Rigorous discussion

This sentence is ambiguous.
Please rephrase.

Working Group

The $BOO field MUST be 0

Specification Author

Communication * N

Are we close to near 0-ambiguity specification?

Our work

ANRW’21SIGCOMM’21

Sage

SIGCOMM’21

● Uncover 5 instances of ambiguity and
6 instances of under-specification in
ICMP RFC

● Generate executable code of
unambiguous specification that
interoperate with 3rd party code

● Generalize to sections of BFD, IGMP
and NTP

Our Approach: Use Natural Language Processing

Natural language processing (NLP) on English specifications

Ambiguity
Discovery

> compile RFC_

Specification

NLP
Semantic parsing:

● Understand the semantics of
a specification

Goal

Executable protocol code generation

Ambiguity
Discovery

> compile RFC_

Specification Executable Code

NLP

Human in the Loop

Semantic parsing is not perfect

Ambiguity
Discovery

> compile RFC_

Specification Executable Code

Edit

Challenges

●

●

●

16

Challenges

● Specifications use domain-specific language

●

●

17

Challenges

● Specifications use domain-specific language

● Semantic parsers have limitations

●

18

Challenges

● Specifications use domain-specific language

● Semantic parsers have limitations

● Semantic representations need to be converted into code

19

Contributions

● Specifications use domain-specific language

● Semantic parsers have limitations

● Semantic representations need to be converted into code

20

Extend semantic parser with domain-specific syntax and semantics

Contributions

● Specifications use domain-specific language

● Semantic parsers have limitations

● Semantic representations need to be converted into code

21

Extend semantic parser with domain-specific syntax and semantics

Automate disambiguation of poor semantic representations with checking
rules

Contributions

● Specifications use domain-specific language

● Semantic parsers have limitations

● Semantic representations need to be converted into code

22

Extend semantic parser with domain-specific syntax and semantics

Automate disambiguation of poor semantic representations with checking
rules

Compile semantic representations into executable code

Sage Components

23

Semantic
Parsing Disambiguation Code Generator

Sage Workflow

24

Semantic
Parsing Disambiguation Code GeneratorRFC

Sage Workflow

25

Semantic
Parsing Disambiguation Code GeneratorRFC

More than 1
representations

Rewrite sentences

Sage Workflow

26

Semantic
Parsing Disambiguation Code GeneratorRFC

Rewrite sentences

Code

Failing unit
tests

Sage Components

27

Semantic
Parsing Disambiguation Code Generator

Semantic parsing

Sentence: “Checkum is zero”Input

NLP Parser

Logical Form: @Is(“checksum”, 0)Output

28

Key Observation

A logical form is a unifying abstraction for disambiguation and code generation

29

Domain Specific Extensions

Term dictionary with generic noun or noun phrase labeler

●

●

○

Domain specific semantics

●

○

30

Domain Specific Extensions

Term dictionary with generic noun or noun phrase labeler

● Part of speech tagging: SpaCy

● Extended SpaCy's term dictionary

○ e.g., “one’s complement”

Domain specific semantics

●

○

31

Domain Specific Extensions

Term dictionary with generic noun or noun phrase labeler

● Part of speech tagging: SpaCy

● Extended SpaCy's term dictionary

○ e.g., “one’s complement”

Domain specific semantics

● Idiomatic usage

○ e.g., “=” sign in “0 = Echo Reply”

32

Sage Components

33

Semantic
Parsing Disambiguation Code Generator

Ambiguity

CCG parser could generate zero or more than one logical forms (LFs)

34

Ambiguity

CCG parser could generate zero or more than one logical forms (LFs)

Incomplete If code = 0, identifies the octet where an error was detected

35

0 LF

Ambiguity

CCG parser could generate zero or more than one logical forms (LFs)

Incomplete If code = 0, identifies the octet where an error was detected

Imprecise
language

To form a information reply message, the source and destination
addresses are simply reversed, the type code changed to 16, and the

checksum recomputed

36

0 LF

code?
type?

Winnowing Ambiguous Logical Forms

37

1+ LFs

Type

Argument ordering

Predicate ordering

Distributivity

Associativity

1 LF

Checking rules

SAGE Components

38

Semantic
Parsing Disambiguation Code Generator

Logical Forms to Code

Logical Form: @Is(“checksum”, 0)Input

Code generator

hdr->checksum = 0;Output

Contextual Information

39

Evaluation

Tools for Disambiguating RFCs

Beyond Sage, there remains many
challenges unaddressed.

SAGE Limitations

● Specification components

Challenges

● Paragraph or sentence-based
analysis

● Mis-matched/mis-captured behaviors
● Standalone or multiple RFCs
● Single protocol or stack of protocols
● Logic v.s. performance

Challenges

● Paragraph or sentence-based
analysis

● Mis-matched/mis-captured behaviors
● Standalone or multiple RFCs
● Single protocol or stack of protocols
● Logic v.s. performance

Challenges

● Paragraph or sentence-based
analysis

● Mis-matched/mis-captured behaviors
● Standalone or multiple RFCs
● Single protocol or stack of protocols
● Logic v.s. performance

Challenges

● Paragraph or sentence-based
analysis

● Mis-matched/mis-captured behaviors
● Standalone or multiple RFCs
● Single protocol or stack of protocols
● Logic v.s. performance

Challenges

● Paragraph or sentence-based
analysis

● Mis-matched/mis-captured behaviors
● Standalone or multiple RFCs
● Single protocol or stack of protocols
● Logic v.s. performance

Current Work

Reduce Human Effort

Semantic
Parsing Disambiguation Code GeneratorRFC

Rewrite sentences

Code

Failing unit
tests

More than 1
representations

Challenges

● Can we avoid writing an ambiguous sentence in the first place?

● What kind of protocols are we going to support?

Solution Directions

● Can we avoid writing an ambiguous sentence in the first place?

● What kind of protocols are we going to support?

A user interface guides spec author to produce only essential information

Solution Directions

● Can we avoid writing an ambiguous sentence in the first place?

● What kind of protocols are we going to support?

A user interface guides spec author to write unambiguous sentences

Stateful protocols
(It requires to keep internal
states to decide operations)

Our vision

User interface Essential protocol
elements

Our vision

User interface Executable code

English RFC

Essential protocol
elements

Our vision

User interface Executable code

English RFC

Essential protocol
elements

Timer

Last received packet

Output packet

Program states

Q & A

Yu-Chuan Yen

YENY@USC.EDU

SAGE

https://github.com/USC-NSL/sage.git

