
Observing Internet Path Transparency to Support Protocol
Engineering

Brian Trammell
ETH Zurich

trammell@tik.ee.ethz.ch

Mirja Kühlewind
ETH Zurich

mirjak@tik.ee.ethz.ch

ABSTRACT
Network operators increasingly rely on the use of in-network
functionality provided by middleboxes to make their net-
works manageable and economically viable. These mid-
dleboxes make end-to-end paths through the Internet more
opaque, by making assumptions about the traffic passing
through them. This in turn leads to ossification of the Inter-
net protocol stack: new features and new protocols are diffi-
cult to deploy because middleboxes don’t understand them.
The first step in fixing this situation is to gather data about
the nature and distribution of middlebox impairments in the
Internet. This data can be used not just to understand the sit-
uation, but also provides guidance to engineer new protocols
to fall back and work around these impairments dynamically.
While there has been much academic work in this area, these
studies suffer either from needing to make general assump-
tions from a relatively small and potentially biased sample
of paths, or an inability to make raw data available for veri-
fication and repetition of analysis due to privacy concerns.

In this position paper we propose an Internet path trans-
parency observatory, to form the technical basis for wide-
spread collaborative measurement of the transparency of paths
through the Internet to various types of traffic. This observa-
tory will allow the sharing of data at a level of aggregation
and anonymization so as to minimize privacy concerns, us-
ing a common data model of types of impairment based on
a description of packet pattern to enable comparison among
different measurement studies.

1. INTRODUCTION
The end-to-end nature of the Internet architecture

has steadily eroded over the past decade and a half,
through the increasing deployment of middleboxes in
the network to provide in-network services. Each new
box that makes restrictive assumptions about the pro-
tocols passing through it further restricts our ability to
deploy new protocols, protocol options, and extensions.
The evolution of the stack has become extremely diffi-
cult in the face of this ossification.

Middleboxes contribute to stack ossification through
two basic mechanisms: The first is essential manipula-
tion of packets. An essential manipulation is something

the middlebox was explicitly deployed to do. The sec-
ond, accidental manipulation, is either a side effect of an
essential manipulation, an effect of an implementation
error in a middlebox, or an effect of a configuration or
deployment error in a middlebox. Accidental manipu-
lations arise from a mismatch between the actual traffic
on the network and the assumptions made by the de-
signers of the middlebox about that traffic. These tend
to persist in the network, given the long development
and deployment cycles of networking equipment.

Many of these boxes are necessary, though. NATs
reduce address allocation pressure and support transi-
tion from IPv4 to IPv6. Proxies and caches can have
performance benefits. Middleboxes, in short, make the
network manageable. Therefore our eventual goal for
making it possible to deossify the protocol stack can be
stated in two parts: (i) reduce the accidental manip-
ulation of packets at middleboxes as close as possible
to zero, while (ii) minimizing the essential manipula-
tion of packets for each given middlebox function. To
reach this goal, the first step is to detect middleboxes
and measure the impairments that they entail on legal
Internet traffic leading to ossification [9].

Many of the discussions about engineering a solution
to this problem, though, take place on the background
of not very much data. In the best survey on the topic in
the literature in recent years, Honda et al [7] look at on
the order of a hundred locations in the Internet. Stud-
ies such as Netalyzr provide detection of other types of
path impairments (e.g. Weaver et al [11]) from a larger
set of locations, but inavailability of the raw data in
these cases limits the comparability and repeatability
of the study. The Alexa top million website domains
list provides a convenient list of targets (e.g. as used
by the authors in [10] in measuring ECN along about
two million paths), but paths to web hosting providers
are not particularly diverse. To get an overview of the
impairments that exist and the likelihood that Internet
traffic might experience connectivity or performance is-
sues due to them, it is necessary to get a common view
of a much larger set of paths and impairments in the
Internet.

1



In this work, we propose the basis of a technical so-
lution to this problem. We define the characteristics of
a common data model for storage and analysis of mid-
dlebox impairments, showing how such a data model
could be built quickly upon existing implemented sys-
tems for network traffic analysis. This position paper is
best seen as a report on work in progress; we intend this
foundation to be used in large-scale measurement stud-
ies for future publication, and invite other researchers
that perform middlebox measurement as well as indus-
trial organizations that may have passive measurement
data that can be used to derive information on middle-
box impairments to collaborate in this project.

2. DEFINING AN OBSERVATORY
Our proposed path transparency observatory will com-

bine a variety of measurements at large scale – unidi-
rectional active measurements of public targets, bidirec-
tional mesh measurements between measurement nodes,
and logs of path impairments generated by applications,
as well as passively observed packet traces in the net-
work or the network edge, to be able to answer questions
about why specific protocols and features fail on specific
networks, as well as to answer general questions about
the prevalence of certain types of impairments.

At a higher level, we can reduce these questions to:

1. What is the likelihood that it will work (i.e. that
all the data the option needs to function will not
be changed by the path, such as through option
stripping)?

2. What is the likelihood that trying to use it will
cause connectivity failure (by dropping packets us-
ing the protocol or protocol feature, or worse, as
in the case of the old routers that ECN [8] would
reboot)?

3. Is there a measurable performance penalty to the
use of an option or protocol as opposed to some
other option or protocol (e.g. through slow-pathing,
different treatment at the queues, etc, etc, etc.)?

We note that question (1) requires information from
both endpoints of a path, while questions (2) and (3)
can also be answered by comparing two different tests
taken from a single vantage point performing active
measurements against remote endpoints. At first glance,
this would appear to make efforts to answer questions
(2) and (3) scale much better than (1): compare for
example Honda et al [7] or TCP HICCUPS [5], which
address questions of packet modification by looking at
hundreds of paths, versus prior work on ECN [2, 10]
looking at ECN-related connectivity issues on millions
of paths. The latter work gives little insight into the de-
tails of packet modification, but scales better due to its

use of public websites as opposed to network research
testbeds for target selection.

Assumptions about the actions of remote endpoints –
either that they will implement protocols as specified, or
based on empirical evidence about non-standard imple-
mentations – can substitute for control of remote end-
points. For example, tracebox [6] uses packet fragments
returned in ICMP Time Exceeded messages to substi-
tute routers along the path for controlled endpoints to
get information about IP header modifications along the
path.

In order to provide the broadest possible basis for
further research and protocol engineering research, any
observatory must meet a few additional requirements
as well: First, the representation of path impairments
in the observatory must be independent of the imple-
mentation of the testing tools involved, in order to en-
courage broad participation. Second, the representation
of paths must account for limitations in the precision of
path: sometimes full traceroutes will be available, some-
times only addresses, prefixes, or Autonomous System
(AS) numbers. Third, path impairments must be de-
scribed in such a way that the tests are repeatable over
different parts of the Internet and at different points
in time, supporting independent verification, compari-
son of impairments over different access networks, and
longitudinal studies.

2.1 Observatory Data Model
On the basis of these questions and these require-

ments, we propose a design centered around a data
model based on packet patterns where a path trans-
parency observation consists of a P, p, t tuple, where
the packet pattern p is essentially a template for se-
quences of packets sent and received. Data elements
in the observatory are expressed as sequences of pack-
ets that are used as evidence for a given impairment
(or lack thereof), along with data extracted from these
templates.

A packet pattern is associated with a path designa-
tor P , which contains some identifier for the initiator
and target of a measurement, and may optionally con-
tain an ordered list of identifiers of nodes and/or net-
works known or suspected to be on the path, whether
observed by traceroute, BGP looking glasses, and/or
taken from some other source. Given the known issues
with extracting topology data from either data-plane [1]
or control-plane observations, only the source and desti-
nation information are taken to be authoritative in fur-
ther analysis of data associated with a given path des-
ignator. Identifiers may be in terms of network-layer
addresses, prefixes, or AS numbers. Path designators
may also be completely pseudonymous for privacy rea-
sons, as well. A path pseudonym can be used to refer to
a given path without locating it in the Internet topol-

2



ogy; data sources which agree on a pseudonymization
algorithm can compare data directly, while all users of
the repository can use pseudonymized observations for
aggregate impairment analysis.

Further each path transparency observation has a
temporal scope t which defines when a given observation
was taken and therefore when the inferences from that
observation are assumed to be valid. Time is expressed
in arbitrary precision, in order to accommodate the dif-
ferent precisions available; it is assumed that observa-
tions will be taken from devices whose clocks are syn-
chronized via Network Time Protocol (NTP), Global
Positioning System (GPS), or other signals.

An observatory, then, is simply a database of these
observations, which can accept tuples from a variety of
source, and from which Internet-wide conclusions can
be drawn, as long as these sources are using the same
packet patterns to represent the same types of impair-
ments.

Using packets as a least common denominator has a
couple of important advantages. The definition of the
packet patterns p can be easily matched against cap-
tured packet traces, allowing extraction of data both
from controlled, dedicated active measurements as well
as from passive measurements. Since many of the im-
pairments we care about for the purposes of transport
stack ossification occur in the network and transport
layer headers, these traces need not contain payload.
The definition of the packet patterns can also be easily
used to generate test traffic for active probing along a
path. This is the basis of the repeatability and compa-
rability provided by the observatory.

2.2 Toward a Packet Pattern Language
The specification of a complete packet pattern lan-

guage is on-going work. In this paper we further explore
the possibilities for developing such a language, based
on previous work in this space.

First and foremost a packet pattern language must
be able to express the common elements of a given path
transparency test, while leaving out irrelevant details
as well as source and destination information captured
by the path designator. Second, since we want to use
the observatory to check for future as well as present
transport features and options, the language must allow
the expression of arbitrary byte strings in packets (i.e.,
strings that do not appear in any presently deployed
protocol).

These requirements would at first glance appear to
point toward a language based on regular expressions,
though these are not particularly suitable to parsing the
types of encodings common in packet headers (type-
length-value, ASN.1, and so on). The problem of ex-
tracting patterns of information from packets, however,
is a well-studied one, so there are many places from

which a packet pattern language can take inspiration,
even though we might not be able to re-use the imple-
mentation.

Properties of single packets can be expressed as fil-
tering expressions: the packets which match a filter for
a property are said to have that property. The Berke-
ley Packet Filter language is the most widespread way
to define filtering expressions over single packets. It in-
cludes primitives for a wide variety of protocols, and
does provide support for testing against arbitrary pat-
terns at arbitrary parts of the packet. It remains under
active development in the Linux kernel [4]. However,
handling of optional header information requires itera-
tive filtering, as would be necessary with a regular ex-
pression approach, and is therefore harder to tackle in
BPF without enhancements.

Similarly, the de facto standard for exchanging infor-
mation about patterns of packets seen in a single flow in
the security monitoring community is the Snort rule lan-
guage 1. Snort adds the ability to split patterns across
multiple packets, but as its detection engine makes as-
sumptions about the underlying protocols, it is proba-
bly not suitable to expressions covering not-yet-invented
protocols. A more promising approach from the security
community is taken by Scapy [3]. Since it was made to
craft packets for security testing, it can express patterns
not foreseen in the specifications and implementations
of the protocols under test. It is, however, oriented to-
ward the generation of packets, and is bound to a single
implementation environment.

At the other end of the spectrum would be to define
a single execution environment and API, and to require
packet patterns to be written as programs in a domain-
specific language written to that API. Here pattern def-
initions can be included in the observatory by reference
(e.g., to a specific commit in a specific Git repository).
This would have the disadvantage of forcing an exe-
cution environment on collaborators, but would ensure
comparability across multiple observations at the im-
plementation level.

3. CONCLUSION AND OUTLOOK
Facing the increasing ossification of the Internet due

to middleboxes that make restrictive assumptions about
the traffic passing though them, we propose a path
transparency observatory to collect, correlate, and ana-
lyze middlebox impairment measurements and thereby
provide a common view on path transparency in the
Internet. On-going work is the design of a packet pat-
tern language as the basis for a common data model
to describe path transparency observations. The next
obvious step is to begin implementation of both the ob-
servatory and measurements to populate it, and the

1see http://manual.snort.org/node27.html

3



solicitation of participation by both the research and
engineering communities in the use of the observatory.

The authors have chaired the “How Ossified is the
Protocol Stack?” proposed research group within the
Internet Research Task Force (IRTF) at the IETF meet-
ing in Prague in July 2015. The aim of this research
group is to bring together researchers and protocol stack
and application engineers to share insights taken from
both Internet measurement and experience with new
protocols and protocol features, as well as tools and
data that can be used to build a deeper understand-
ing of the deployability of new protocols and protocol
features in the Internet.

4. ACKNOWLEDGMENTS
This work is partially supported by the European

Commission under grant agreement FP7-318627 mPlane;
this support does not imply endorsement of the content.

5. REFERENCES
[1] B. Augustin, X. Cuvellier, B. Orgogozo, F. Viger,

T. Friedman, M. Latapy, C. Magnien, and
R. Teixeira. Avoiding traceroute anomalies with
paris traceroute. In Proceedings of the 6th ACM
SIGCOMM Conference on Internet Measurement,
IMC ’06, pages 153–158, New York, NY, USA,
2006. ACM.

[2] S. Bauer, R. Beverly, and A. Berger. Measuring
the state of ECN readiness in servers, clients,and
routers. In Proc. Internet Measurement
Conference (IMC), 2011.

[3] P. Biondi. Packet generation and network based

attacks with Scapy. In CanSecWest/core05, May
2005.

[4] J. Corbet. Extending extended BPF. Linux
Weekly News, July 2014.

[5] R. Craven, R. Beverly, and M. Allman.
Middlebox-cooperative TCP for a non end-to-end
Internet. In Proceedings of ACM SIGCOMM 2014
Conference, Chicago, IL, USA, August 2014.

[6] G. Detal, B. Hesmans, O. Bonaventure,
Y. Vanaubel, and B. Donnet. Revealing
Middlebox Interference with Tracebox. In
Proceedings of the 2013 Internet Measurement
Conference, IMC ’13, pages 1–8, Barcelona,
Spain, 2013.

[7] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh,
M. Handley, and H. Tokuda. Is it still possible to
extend TCP? In Proc. of IMC 2011, IMC ’11,
pages 181–194, New York, NY, USA, 2011. ACM.

[8] K. Ramakrishnan, S. Floyd, and D. Black. The
Addition of Explicit Congestion Notification
(ECN) to IP. RFC 3168, IETF, Sept. 2001.

[9] B. Trammell and J. Hildebrand. Evolving
Transport in the Internet. IEEE Internet
Computing, September 2014.

[10] B. Trammell, M. Kühlewind, D. Boppart,
I. Learmonth, G. Fairhurst, and R. Scheffenegger.
Enabling internet-wide deployment of explicit
congestion notification. In Proc. Passive and
Active Measurement (PAM), New York, March
2015.

[11] N. Weaver, C. Kreibich, M. Dam, and V. Paxson.
Here be web proxies. In Proc. Passive and Active
Measurement (PAM), Los Angeles, March 2014.

4


