
Study on OS Fingerprinting and NAT/Tethering
based on DNS Log Analysis

Deliang Chang
Tsinghua University

chdlgs@gmail.com

Qianli Zhang
CERNET Center

Tsinghua University
zhang@cernet.edu.cn

Xing Li
CERNET Center

Tsinghua University
xing@cernet.edu.cn

ABSTRACT
OS fingerprinting and NAT detection are considered impor-
tant in various researches like network troubleshooting, de-
ployment of services. Previous passive approaches usually
require raw network traffic, which is often difficult to de-
ploy. In this paper, a novel method is designed to fingerprint
the OS and classify the NAT only using DNS log. Features
of the Windows, MacOS/iOs, Android and Linux operating
systems can be automatically extracted from labelled DNS
log. With these features a simple classifier can fingerprint
the OS types of these devices accurately. We apply this al-
gorithm on data set from a large scale network. Analysis
also reveals that nowadays the Windows operating systems
are widely used in tethering or NAT, which is contrary to our
previous knowledge.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Net-
work OperationsNetwork Monitoring

General Terms
Algorithm, Measurement

Keywords
OS Fingerprinting, DNS, Supervised Learning

1. INTRODUCTION
Fingerprinting operation system (OS) on a remote de-

vice passively is often required by network administra-
tors to make network policy or deploy network services.
OS fingerprinting is also widely used in NAT detection.

There are some previous works about OS fingerprint-
ing, since it’s a research area that attracts high atten-
tion for a long time. Some approaches [1, 7, 3] are
active, which means sending probe packets to devices
need to be fingerprinted. Another approaches [12, 8, 6]
uses passive ways. They fingerprint the OS by process-
ing information collected from those devices passively.
They used some fields in TCP/IP headers or other kinds
of traffic based on knowledge about OS behavior, and
some of them use combined features as well.

What’s more, NAT devices are being widely deployed
in the Internet nowadays. NAT detection is often con-
sidered important by ISPs since the share of one IP
address among several devices may allow the unautho-
rized use of the network. The presence of NAT devices
also breaks the end-to-end connectivity and make the
network topology more complex.

There’re several approaches about NAT detection prob-
lem. If more than one are devices detected from the
same IP at the same time, it shows a great possibility
of presence of NAT or tethering behavior. Many active
or passive approaches were proposed to detect the pres-
ence of NAT or tethering. Tools [12, 1] we mentioned
before are also able to detect NAT devices. TTL value
in [11] or IPID sequences pattern in [4] was used as
feature to count hosts and detect NAT devices. Some
methods combined several features to improve accuracy.
For example, Beverly in [5] developed a naive Bayesian
classifier and used TTL, don’t fragment (DF) and other
field of TCP/IP header as features.

Most previous methods [12, 9, 2, 6, 11, 4] were based
on traffic analysis. Especially they focused on HTTP
traffic, which often incurs in-depth analysis on raw pack-
ets. However, raw packet capture is often deemed hard
for a large-scale network.

In this paper, we resort to a novel method to finger-
print OS types by DNS logs. DNS service can be pro-
vided by network administrators or third-party providers.
Any provider would have DNS requests logged when
users use its service. Moreover, DNS [10] runs on appli-
cation layer and need no changes of a running network.
The logs are also easier to store than raw packets as
well.

In our algorithm, we can successfully fingerprint OS
types by only using the DNS logs. The previous work
based on traffic analysis focused on ”how” a device
transmit a packet, and in our paper we’re interested
in ”what” do they transmit. Since the algorithm using
DNS log is behavior based, methods that aim to defeat
or frustrate the OS fingerprint algorithm by manipu-
lating the packets’ format will not succeed anymore.
And furthermore, we’ll study about NAT based on the

1



method and result of OS fingerprinting.

2. OVERVIEW OF PROPOSED METHOD
The basic idea to fingerprint the OSes using DNS log

is, typically, most modern operating systems may use
os-specific DNS queries to implement tasks like achiev-
ing the latest OS patch. Also, some operating sys-
temes may have some os-specific applications to incur
os-specific DNS queries, for example, iMessage in iOS
systems. Thus we can infer the OS types by this knowl-
edge.

To extract these OS specific features, we borrow the
text categorization concepts.

First of all, we use the domain name field of the
DNS log entry as our training sample, since the domain
names may carry information about the OS it comes
from. It represents the activity of the client. In this
context, a user’s activity can be viewed as an article,
while each queried domain name can be regarded as
a word in such an article. We try to extract feature
from all those articles and select the best ones by using
some feature selection algorithm of text categorization
in section 3.1. Then the OS fingerprinting problem is
equal to classify a new article of these feature domain
names. We build a simple classifier in section 3.2 to
deal with this problem. It is demonstrated that by only
using a small group of domain names we can fingerprint
OSes easily and accurately. As for NAT, we consider it
a multi-class classification problem. We’ll discuss it in
section 4.2. At last, the paper is concluded in section
5.

3. ALGORITHM

3.1 Feature Extraction
Devices running different OSes may have different ac-

cess behavior. Based on this observation, we train DNS
log labelled by DHCP fingerprinting and extract the
features for each category of OS.

For a specific operating system, it will resolve some
specific domain names to implement some necessary
tasks such as fetching latest update patch or clock syn-
chronization. Some os-specific applications with auto
update or sync function may also generate particular
DNS queries. Moreover, users using different OSes may
have different preference. The task is thus to find the
OS specific DNS queries.

As we discussed in section 2, we regard a device’s
DNS log as an articile. Then we choose Chi-squared
test as our feature selection methods. Since it has a
clear mathematical meaning, is easy to implement, and
of low complexity and good effect.

For a domain name and two OS categories, the con-
tingency table is shown in table 1. a, b, c, d are num-
ber of IP addresses. And the score is calculated using

formula (1). Then for a domain name d and an OS cat-
egory os0, we further use value minimum value of C ′ of
os0 and each other OS category (shown in formula(2) ).
It represents the ”worst possible” discriminatory power
of d for os0.

At last we score and sort every domain name in the
DNS log for each OS automatically by Cd,os0 . In this
way we can find ”the most representative domain names
for each kind of operating system”. We use these do-
main names as our features. We call the set of features
representing an OS category os0 as ”a feature set” of
os0. We also make sure that each feature set has the
same size.

C ′
d,os1,os2 =

(ad− bc)2(a + b + c + d)

(a + b)(c + d)(a + c)(b + d)
(1)

Cd,os0 = min
osi 6=os0,osi∈C

C ′
d,os0,osi (2)

has domain d in its DNS log?
yes no

belongs to os1 a c
belongs to os2 b d

Table 1: Contingency Table

3.2 Classification
There have been a lot of classifiers designed for var-

ious purposes. Naive bayes, decision tree or k-nearest
neighbors algorithm are all capable of fingerprinting the
OS after the features have been selected.

Since the whether a domain name appearance in one
IP address’s DNS log is a simplest yes-no question, ham-
ming distance may be appropriate for our classifier.

We define the feature set of OSi as SOSi
, a remote de-

vice needed fingerprinting as devj , and the set consists
of devj ’s domain records as Pdevj

. We compute the in-
tersection of set SOSi

for each OSi, then we choose the
OS with the biggest cardinality of the intersection. In
other words, for a device devj , we identify devj ’s OS as
OS0 when it meets the following equation.

OS0 =arg max
OSi

|SOSi
∩ Pdevj |,

OSi ∈ {android, linux,mac,win}
(3)

4. EVALUATION AND DISCUSSION

4.1 OS Fingerprinting
Though the concept of the classifier is simple, the

result in figure 1 clearly shows that our approach is
functioning in OS fingerprinting problem.

We use DNS log dumped from the DNS resolver of
Tsinghua University. Many of devices in Tsinghua Uni-
versity use this server as their default DNS server, and

2



Figure 1: Evaluation in Different Amount of Features

the campus DHCP service will provide the address of it
as the default DNS resolver.

We run our algorithm on this data set. It has more
than 0.95 recall rate for Windows and Android, 0.88 for
Mac/iOS and 0.83 for Linux when feature number is 30.
More detailed analysis indicates that the unbalanced
data has an bad effect on the Linux’s accuracy.

The number above the bars are the number of feature
of each OS we use in our classification process. The
result hardly changes when the cardinality of feature
set changes, shows that our approach has high tolerance
for number of features selected.

Above all, the features we’ve selected before have
been proved effective in OS fingerprinting. And in this
way we can identify an OS on by the presence of about
30 domain names.

4.2 Discussion on NAT or Tethering
Furthermore, as we mentioned in section 1, DNS data

can also be used in tethering/NAT detection.

(a) First feature set (b) Other feature sets

Figure 2: CDF of Number of Feature Domain Names
in Device’s DNS Log

Figure 2 shows some statistics about feature domain
names. More specifically, it’s the CDF of the number
of feature domain names included in a device’s DNS
log. ”First” feature set represents the feature set which
has the biggest intersection with device’s domain log(or
the smallest hamming distance). ”Other” feature in
subplot 2b shows number of all other 3 kind of fea-
tures. ”NAT” curve represents the DNS log queried by
the devices which are identified by DHCP fingerprint-

ing as home routers of TP-LINK, NET-GEAR or other
brands. Other OS are also identified by DHCP method,
which means that it’s the operating system running at
device on network access point.

Differences between NAT and non-NAT devices can
be observed clearly in figure 2b. According to the fig-
ure, about 90% of devices running a normal OS has
less than 2 features from other feature sets apart from
the first one, which is less than 50% for NAT devices.
The results showed statistic significant difference, that
is, for a normal operation system, it has a great prob-
ability that it only contains domain names from only
one feature set of an OS, as the curve increase steeply
at very beginning. And NAT devices are more likely
contains several kinds of feature domain names than a
normal non-NAT device. This knowledge can be used
in NAT classification.

We use the similar way to the approach in OS Fin-
gerprinting, except it is kind of multi-class classification
problem. The main conception here is Tethering/NAT
behavior often indicates the activity of sharing a con-
nection. In this way, different OSes behind one single
IP address reveals the presence of NAT/tethering be-
havior.

Therefore, we will check whether there are some do-
main names from the same IP address are likely gener-
ated by two or more different OSes within a short period
of time. If that happens, we consider it a NAT device.

In our data set, there’re 1466 of 19912 samples are
classified as NAT by our algorithm. And about 730 of
them are labelled as Windows by DHCP fingerprints,
which is interesting. Some DNS queries specific to mo-
bile OSes like Android are sent from them, which im-
plies that laptops may be used as a Wi-Fi hotspot for
mobile devices. This can hardly be observed in Android
category(about 1%), which reveals that although most
mobile devices has tethering function that allows them
to share the Internet connection with laptops, people
prefer to use notebook devices as hotspot.

Only 311 of them are labelled as NAT devices of pop-
ular brands such as NETGEAR or TP-LINK. And ob-
viously, compared to general cases outside the campus,
the NAT coverage is much lower in the university be-
cause IP address is enough that almost all devices can
own a global one.

There’re still a amount of clients that cannot be ig-
nored choose to use NAT, anyway. It indicates that
besides saving one or two global IP addresses, sharing
connections with other devices conveniently and quickly
also seems attractive to the end-users. People may use
laptop to share Internet connection with their mobile
devices in absence of fast mobile connection. That indi-
cates the necessity of mobile devices and services nowa-
days as well.

3



4.3 Comparison Between DNS And DHCP Ap-
proach

Figure 3: CDF of Number of Features When DNS &
DHCP Approaches Differ.

In section 4.2, we’ve talked that DHCP can infer the
OS of device at the access point. On other hand, our
method based on DNS demands queries from all pos-
sible devices using that specific IP address. Therefore,
there may be some distinction since the measurement
objects of two methods are slightly different.

Figure 3 shows the CDF of number of features of
”other” feature set when our approach based on DNS
and labelling algorithm based on DHCP stay the same
or differ from each other. The green curve on the top
is when DNS and DHCP make the same decision. The
red curve on the middle is when they differ. The black
one on the bottom is the curve about Nat devices. It
reveals that when they have different opinion about a
device’s OS, it is more likely that the DNS queries from
that IP address are from more than one operating sys-
tem. It shows the limitation of DHCP fingerprint. It
is imprecise sometimes because the activity that PC or
laptop running a Windows/Linux share Internet con-
nection with other devices such as mobile phones can’t
be detected. That influences the accuracy of OS finger-
printing and NAT detection, and the accuracy of our
approach, too. Since we assume that the DHCP finger-
print is accurate to label our data set.

5. CONCLUSION AND FUTURE WORK
In this paper we proposed a new OS fingerprinting

method by domain names in DNS log. We extract fea-
ture domains from labelled DNS log for each OS. Then
we build a classifier to identify the OS with these fea-
tures before. We evaluate the result with data set from
a large network. It can detect Windows/Android with
the recall more than 0.95, 0.89 for Mac and 0.85 for
Linux.

As for NAT, more analysis reveal that currently win-
dows systems are more often used in NAT/tethering,
which reveals end-users’ preferences to use their ”heavy-
weight” devices to share connection with their mobile
ones for easy and fast Internet access. It indicates the

ever-lasting life of NAT devices as long as these de-
mands exist.

Preliminary results have demonstrate the algorithms
effectiveness. However, there are still more researches
required. For example, though DHCP logs are used to
build the labelled set, it may be not precise sometimes.
More information in DNS log such as port number or
record type is not considered yet. They may also be
helpful for OS fingerprinting or NAT detection.

6. REFERENCES
[1] Nmap - free security scanner for network

exploration & security audits. http://nmap.org/.
[2] G. Acar, M. Juarez, N. Nikiforakis, C. Diaz,

S. Gürses, F. Piessens, and B. Preneel.
Fpdetective: dusting the web for fingerprinters. In
Proceedings of the 2013 ACM SIGSAC conference
on Computer & communications security, pages
1129–1140. ACM, 2013.

[3] O. Arkin. A remote active os fingerprinting tool
using icmp. login: the Magazine of USENIX and
Sage, 27(2):14–19, 2002.

[4] S. M. Bellovin. A technique for counting natted
hosts. In Proceedings of the 2nd ACM SIGCOMM
Workshop on Internet measurment, pages
267–272. ACM, 2002.

[5] R. Beverly. A robust classifier for passive tcp/ip
fingerprinting. In Passive and Active Network
Measurement, pages 158–167. Springer, 2004.

[6] Y.-C. Chen, Y. Liao, M. Baldi, S.-J. Lee, and
L. Qiu. Os fingerprinting and tethering detection
in mobile networks. In Proceedings of the 2014
Conference on Internet Measurement Conference,
pages 173–180. ACM, 2014.

[7] L. G. Greenwald and T. J. Thomas. Toward
undetected operating system fingerprinting.
WOOT, 7:1–10, 2007.

[8] T. Kohno, A. Broido, and K. C. Claffy. Remote
physical device fingerprinting. Dependable and
Secure Computing, IEEE Transactions on,
2(2):93–108, 2005.

[9] J. P. S. Medeiros, A. M. Brito, and
P. Motta Pires. A new method for recognizing
operating systems of automation devices. In
Emerging Technologies & Factory Automation,
2009. ETFA 2009. IEEE Conference on, pages
1–4. IEEE, 2009.

[10] P. Mockapetris. Rfc 1035: Domain names -
implementation and specification, november 1987.
URL http://www. ietf. org/rfc/rfc1035. txt, 1987.

[11] K. Straka and G. Manes. Passive detection of nat
routers and client counting. In Advances in Digital
Forensics II, pages 239–246. Springer, 2006.

[12] M. Zalewski. p0f: Passive os fingerprinting tool,
2006.

4


