
QuickSync: Improving Synchronization Efficiency for
Mobile Cloud Storage Services

Yong Cui
Department of Computer
Science and Technology

Tsinghua University
Beijing, China

cuiyong@tsinghua.edu.cn

Zeqi Lai
Department of Computer
Science and Technology

Tsinghua University
Beijing, China

laizq13@mails.tsinghua.edu.cn
Xin Wang

Department of Electrical and
Computer Engineering
Stony Brook University

Stony Brook, New York, USA
xwang@ece.sunysb.edu

Ningwei Dai
Department of Computer
Science and Technology

Tsinghua University
Beijing, China

lemondnw@gmail.com

Linhui Sun
Department of Computer
Science and Technology

Tsinghua University
Beijing, China

lh.sunlinh@gmail.com

ABSTRACT
Mobile cloud storage services have gained phenomenal suc-
cess in recent few years. In this paper, we identify, analyze
and address the synchronization (sync) inefficiency problem
of modern mobile cloud storage services. Our measurement
results demonstrate that existing commercial sync services
fail to make full use of available bandwidth, and generate a
large amount of unnecessary sync traffic in certain circum-
stance even though the incremental sync is implemented.
These issues are caused by the inherent limitations of the
sync protocol and the distributed architecture. Based on our
findings, we propose QuickSync, a system with three novel
techniques to improve the sync efficiency for mobile cloud
storage services, and build the system on two commercial
sync services. Our experimental results using representa-
tive workloads show that QuickSync is able to reduce up to
52.9% sync time in our experiment settings. We’ve made
a presentation to introduce the work in this paper in IETF
93, July 2015. IETF now plans to set up a new working
group to study on standardizing efficient sync protocols in
the future.

Categories and Subject Descriptors: C.4 [Performance
of Systems]

Keywords: Mobile Cloud Storage, Measurement, Perfor-
mance.

1. INTRODUCTION
Cloud storage services, such as Dropbox [13], OneDrive

[4] (used to be SkyDrive) and GoogleDrive [2], are expand-

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

MobiCom’15, September 7–11, 2015, Paris, France.

c© 2015 ACM. ISBN 978-1-4503-3543-0/15/09 ...$15.00.

DOI: http://dx.doi.org/10.1145/2789168.2790094.

ing their mobile market by enabling users to convenient-
ly synchronize files across multiple mobile devices (laptops,
tablets or smartphones) and back up data. These services
are gaining tremendous popularity in recent years, and have
attracted a huge number of users.

As a primary technique for cloud storage services, data
synchronization (sync) enables the client to automatically
update local file changes to the remote cloud through net-
work communications. Synchronization efficiency is deter-
mined by the speed of updating the change of client files
to the cloud, and considered as one of the most important
performance metrics for cloud storage services. Changes on
local devices are expected to be quickly synchronized to the
cloud and then other devices with low traffic overhead.

However, efficient sync of data is more challenging for mo-
bile cloud storage services as the client often suffers higher
delay and loss caused by the mobility and varying channel
conditions. The sync process may also be interrupted due to
the intermittent connections. Therefore, the sync efficiency
of popular services is still far from being satisfactory, and
in certain circumstances, the sync time may be much longer
than expected. As commercial storage services are mostly
closed source with data encrypted, their designs and opera-
tional processes remain unclear to the public. It is important
but a big challenge to identify the performance bottlenecks
and address the issues accordingly.

The aim of this paper is to identify and address the sync
inefficiency problem of modern mobile cloud storage system-
s. Our work consists of three major components: 1) identify-
ing the performance bottlenecks based on the measurement
of the sync operations of popular commercial cloud storage
services in the wireless environment, 2) providing detailed
analysis on the problems identified, and 3) proposing a new
mobile cloud storage service framework which integrates a
few techniques to enable efficient sync operations in mobile
cloud storage services.

We first measure the sync performance of the most pop-
ular commercial cloud storage services in wireless networks
(§3). Our measurement results show that the sync protocol
used by these services is indeed inefficient. Specifically, the

Capabilities
Windows Android

Dropbox Google Drive OneDrive Seafile Dropbox Google Drive OneDrive Seafile
Chunking 4 MB 8 MB var. var. 4 MB 260 KB 1 MB ×
Bundling

√ × × × × × × ×
Deduplication

√ × × √ √ × × ×
Delta encoding

√ × × × × × × ×
Data compression

√ √ × × × × × ×

Table 1: Capability implementation of four popular cloud storage services. The var. refers to variable chunk size.

sync protocol can not fully utilize the available bandwidth
in high RTT environment or when synchronizing multiple
small files. Furthermore, although some services, e.g. Drop-
box, have implemented incremental sync to reduce traffic
size [11, 17], this technique is not valid in all scenarios. We
observe that a document editing process may result in sync
traffic 10 times that of the modification.
We further conduct in-depth analysis of the trace data and

also apply decryption to find the root cause of the inefficien-
cy identified in the sync protocol (§4). Our studies indicate
that the inherent limitations of the sync protocol and the dis-
tributed architecture are two major factors that cause the
inefficiency. Specifically, effective deduplication to reduce
redundant data transmissions does not always contribute to
the sync efficiency. The distributed nature of storage ser-
vices poses a challenge to the practical implementation of
the delta encoding algorithm, and the failure in the incre-
mental sync may lead to a large traffic overhead. The itera-
tive sync scheme suffers from low throughput when there is
a need to synchronize a set of files and when the network is
slow.
Based on our observation and analysis, we propose QuickSync,

a system with three novel techniques to improve the sync effi-
ciency for mobile cloud storage services (§5). To reduce the
sync time, we introduce Network-aware Chunker to adap-
tively select the proper deduplication strategy based on real-
time network conditions. To reduce sync traffic overhead, we
propose Redundancy Eliminator to correctly perform delta
encoding between two similar chunks located in the origi-
nal and modified files at any time during the sync process.
We also design Batched Syncer to improve the network u-
tilization of sync protocol and reduce the overhead when
resuming the sync from an interruption.
We build our QuickSync system on Dropbox, currently

the most popular cloud storage services, and Seafile [5], an
popular open source personal cloud system (§6). Collective-
ly, these techniques achieve significant improvement in the
sync latency for cloud storage services. Evaluation results
(§7) show that the QuickSync system is able to significantly
improve sync efficiency, reducing up to 51.8% sync time in
representative sync scenarios with our experiment settings.
To the best of our knowledge, we are the first to study the
sync efficiency problem for mobile cloud storage services.
We’ve made a presentation to introduce our work in this

paper in the appsawg session of IETF 93, Prague, in July
2015. Our work attracted intense attention of many partic-
ipating experts and companies, including Microsoft, Cisco,
Alibaba, Huawei and Akamai. IETF now plans to set up a
new working group to make efforts in standardizing efficient
sync protocols for cloud storage services in the furture.

2. BACKGROUND

Before analyzing the sync inefficiency issues, we first give
a brief overview of the typical architecture of cloud storage
services and the key capabilities that are often implemented
for speeding up data transmissions.

Architecture: A typical architecture of cloud storage
services includes three major components [10]: the clien-
t, the control server and the data storage server. The file
system on the server side has an abstraction different from
that of the client. Metadata (including the hashes, modi-
fied time etc.) and contents (often split into chunks) of user
files are separated and stored in the control and data storage
servers respectively. The key operation of the cloud storage
services is data sync, which automatically maps the changes
in users’ local file system to the cloud via a series of net-
work communications. During the sync process, metadata
are exchanged with the control server through the metadata
information flow, while the contents are transferred via the
data storage flow. In a practical implementation, the control
server and the data storage server may be deployed in differ-
ent locations. For example, Dropbox builds its data storage
server on Amazon EC2 and S3. Another important flow,
namely notification flow, pushes notifications to the client
once changes from other devices are updated to the cloud.

Key capabilities: Cloud storage services can be equipped
with several capabilities to optimize the storage usage and
speed up data transmissions: 1) chunking (i.e., splitting a
content into a certain size data unit), 2) bundling (i.e., the
transmission of multiple small chunks as a single chunk),
3) deduplication (i.e., avoiding the retransmission of content
already available in the cloud), 4) delta-encoding (i.e., only
transmitting the modified portion of a file) and 5) compres-
sion. Previous work [11] shows how the capabilities have
been implemented on the desktop client. We further follow
the methods in [11] to analyze the capabilities that have
been implemented on the mobile client. Table 1 summa-
rizes the capabilities of each service on multiple platforms,
with the test client being the newest released version before
March 1, 2015. In the following sections, we will show that
these capabilities also make a strong side impact on the sync
efficiency.

3. SYNCHRONIZATION INEFFICIENCY
As discussed previously, sync efficiency indicates how fast

client can update changes to the cloud. In this section, we
conduct a series of experiments to investigate the sync in-
efficiency issue existing in four most popular commercial
cloud storage service systems in wireless/mobile environ-
ments. We will further analyze the observations and explain
the root cause in Section 4.

3.1 Low DER Not Equal to Efficiency
To evaluate the effectiveness of deduplication in reducing

the original transmission data size, the metric Deduplication
Efficiency Ratio (DER) is defined as the ratio of the dedu-

Figure 1: Lower DER does not always make efficient.

plicated file size to the original file size. Intuitively, lower
DER means more redundancy can be identified and the total
sync time can be reduced. However, our experiment indi-
cates that lower DER may not alway make sync efficient.
As only Dropbox and Seafile incorporate the deduplica-

tion function, to study the relationship between the sync
time and DER, we use Wireshark to measure the packet
level trace of the two services in a controlled WiFi environ-
ment. We use tc to tune the RTT for each service according
to the typical RTT values in wireless/cellular networks [8].
We only perform measurement on the Windows platform
because most services did not implement the deduplication
on the Android platform. We collect about 500MB user da-
ta from a Dropbox user and upload these fresh data via the
tested services. From the trace captured we can get the sync
time and calculate the DER as a ratio of the transmission
traffic size and the original traffic size.
Figure 1 shows that the DER for Dropbox and Seafile are

87% and 65% respectively under each RTT setting. Intu-
itively, a higher DER would take more time for sync. How-
ever, when the RTT is 200ms, it costs more time for Seafile
to complete the sync as compared to Dropbox.

3.2 Failure of Incremental Sync
To reduce the network traffic for synchronizing changes,

some services such as Dropbox leverage the delta encod-
ing algorithm (e.g. rsync [24]) to achieve incremental sync
instead of full-file sync. However, next we will show that
the incremental sync is not always available, and the client
software may synchronize much more data than expected.
We use the metric Traffic Utilization Overhead (TUO) [17],
defined as the ratio of generated traffic size to expected traf-
fic size, to evaluate how much additional traffic is incurred.
We conduct two sets of experiments to find out when the
claimed incremental sync mechanism fails.
In experiment 1, we perform three types of basic opera-

tion in typical real-world usage patterns: flip bits, insert and
delete over continuous w bytes at the head, end or random
position of the test file, and see how much sync traffic will be
generated when the given operation is performed. Thereby,
we have TUO = SyncTrafficSize

w
. Since 10KB is the recom-

mended default window size in the original delta encoding
algorithm [24], we vary w from 10KB to 5MB to ensure that
the modification size is larger than the minimum delta that
can be detected. To avoid the possible interaction between
two consecutive operations, the next operation is performed
after the previous one is completed. Operation in each case
is performed 10 times to get the average result. Because
Seafile, GoogleDrive and OneDrive have not implemented
the incremental sync, they upload the whole file upon the
modification, and are expected to have a large amount of
traffic even for a slight modification. Thus in this section
our studies focus on Dropbox.

Figure 3: TUO of synchronizing modification in the middle
of sync process.

Figure 2 displays our results. Interestingly, the three types
of operation result in totally different traffic size for Drop-
box. For the flip operation, in most cases the TUO is close
to 1. Even when the modification window is 10KB, the TUO
is less than 1.75, indicating that incremental sync works well
for flip operations in any position. The sync traffic of insert
operation is closely related to the position of the modifica-
tion. The TUO is close to 1 when inserting is performed at
the end of the file, but the generated traffic is much high-
er than expected when an insertion is made at the head or
a random position. Specifically, inserting 3MB data at the
head or random position of a 40MB file results in nearly
40MB sync traffic, which is close to the full file sync mecha-
nism. The TUO results for the delete operation are similar
to the insert operation. Differently, deleting at the end of the
file generates small sync traffic (TUO is close to zero). How-
ever deleting at the head or random position leads to larger
sync traffic, especially for a large file, e.g. 40MB (TUO is
larger than 10). Another interesting finding is that for both
insert and delete operations in Dropbox, the TUO drops to
a very low value when the modification window w is 4MB,
where the TUO is close to 1 for the insert operation and
close to 0 for the delete operation.

In experiment 1 all operations are performed on synchro-
nized files (both the metadata and contents are completely
updated to the cloud). In experiment 2, we investigate the
sync traffic of performing modification on being synchro-
nized files, i.e., the files in the middle of the transmissions
to the cloud. We first create a 4MB fresh file in the sync
folder, and perform the same flip operation as that in exper-
iment 1 at a random position with the modification window
w = 512KB in every 20s. Note that the TUO of such an
operation is close to 1 in the experiment 1, and in the experi-
ment 2, the flip operation is performed immediately after file
is created while the sync process has not completed. Such
a behavior is common for an application such as MS-word
or VMware which creates fresh temp files and periodically
modify them at runtime. We vary the number of modifica-
tions to measure the traffic size. We also use tc to involve
additional RTT to see the traffic under different network
conditions.

Figure 3 shows the sync traffic for periodic flip on 4MB
file with various RTT. Interestingly, for all cases the TUO
is larger than 2, indicating that at least 8MB data are syn-
chronized. Moreover, we observe that the TUO is affected
by the RTT. When the RTT is 600ms, surprisingly the TUO
raises with the increase of the modification times. The sync
traffic researches up to 28MB, 448% of the new content size
when the modifications are performed five times.

In summary, our measurement results show that the in-
cremental sync does not work well in all cases. Specifical-

(a) flip (b) insert (c) delete

Figure 2: Traffic utilization overhead of Dropbox generated by a set of modifications.

ly, for insert and delete operations at certain positions, the
generated traffic size is much larger than the expected size.
Moreover, the incremental sync mechanism may fail on the
being synchronized files, causing undesired traffic overhead.

3.3 Bandwidth Inefficiency
Sync throughput is another critical metric that reflects

the sync efficiency. The sync protocol relies on TCP and its
performance is affected by network factors such as RTT or
packet loss. Because of different system implementations, it
is unreasonable to evaluate how the underlying bandwidth of
a storage service is used by directly measuring the through-
put or latency [11]. To characterize the network usage of
sync protocol, we introduce a novel metric, Bandwidth Uti-
lization Efficiency (BUE) to characterize the network usage
of sync protocol. We define BUE as the ratio of the practical
measured throughput to the theoretical TCP bandwidth. The
latter indicates the available bandwidth in steady state and
can be estimated by Segment size∗cwnd

RTT
, where cwnd is the

observed average congestion window size during the trans-
mission. Compared with the throughput, BUE better re-
veals the essential bandwidth utilization capability of cloud
storage services.
To investigate how the sync protocol utilizes the underly-

ing network bandwidth, we conduct experiments over Drop-
box, GoogleDrive, OneDrive and Seafile with their Windows
and Android clients running in Wi-Fi and cellular networks
(UMTS) respectively. We create a set of highly compressed
files (to exclude the effect of compression) with various total
sizes in the sync folder and measure the packet-level trace
using Wireshark and tcpdump. We compute the theoretical
TCP bandwidth based on real-time observed RTT and cwnd
to get BUE. In Wi-Fi networks, we use tc to tune the RTT,
simulating various network conditions. In cellular networks
we change the position to tune the RTT. Each test is per-
formed 10 times to calculate the average result.
The BUE is measured for all services in WiFi networks

with different RTT, as shown in Figure 4. For each service,
the BUE of synchronizing 4MB file is close to 1. The traffic
size of syncing 40KB*100 files is close to that of 4MB file,
but we observe that the BUE slumps significantly when syn-
chronizing multiple files. This degradation is more serious
for GoogleDrive and OneDrive, with their BUE dropping
under 20% when syncing 40KB*100 files. For all services,
BUE decreases for large files such as 20MB or 40MB and
when RTT increases. The degradation of BUE indicates
that the sync protocol cannot efficiently utilize the under-
lying available bandwidth. The decrease of BUE for large
RTT indicates that the sync protocol can not well adapt to

a slow network. Results in cellular networks are similar and
be omitted due to the page limit.

4. ROOT CAUSE ANALYSIS
Our observations have demonstrated that cloud storage

services suffer sync inefficiency problems. In this section,
we analyze the sync protocol and explain the root cause for
previous inefficiency observations.

4.1 Pinning Down the Sync Protocol
To understand the reasons of sync inefficiency, it is dif-

ficult to directly analyze the sync protocol of commercial
services such as Dropbox, as they are close source and most
of the network traffic is encrypted. In our work, we exploit
both measurement and decryption to understand the sync
protocol. Specifically, we first analyze the network traces
of all services studied in Section 3 to show the general sync
process, and then we hijack the encrypted traffic of Dropbox
so that we can understand the details of the sync protocol.

Commonality analysis: Although all tested services en-
crypt their sync traffic and we are unable to directly obtain
the protocol details, we still can get some high-level knowl-
edge of the protocol by analyzing the packet-level network
traces. Our analyses on the traces in Section 3 indicate that
the sync processes of all services in various platforms com-
monly have three key stages: 1) sync preparation stage, the
client first exchanges data with the control server; 2) data
sync stage, the client sends data to, or retrieves data from
the data storage server. In case that the chunking scheme
is implemented, data chunks are sequentially stored or re-
trieved with a “pause” in between, and the next chunk will
not be transferred until the previous one is acknowledged by
the receiver; 3) sync finish stage, the client communicates
with the control server again to conclude its sync process.

In-depth analysis: The Dropbox client is written in
Python. To decrypt the traffic and obtain the details of
the sync protocol, we leverage the approach in [15] to hi-
jack the SSL socket by DynamoRIO [1]. Although we only
decrypt the Dropbox protocol, combining the commonali-
ty analysis we believe the other three services may follow a
sync protocol similar to that of Dropbox.

Figure 5 shows a typical Dropbox sync workflow when u-
ploading a new file. In the sync preparation stage, the file
is first split and indexed locally, and the block list which in-
cludes all identifiers of chunks is sent to the control server in
the commit batch. Chunks existing in the cloud can be iden-
tified through hash-based checking and only new chunks will
be uploaded. Next in the data-synchronization stage, the
client communicates with the storage server directly. The

(a) Dropbox (b) GoogleDrive (c) OneDrive (d) Seafile

Figure 4: Bandwidth utilization efficiency of 4 cloud storage services in various network conditions

client synchronizes data iteratively, and in each round of it-
eration several chunks will be sent. At the end of one round
of iteration, the client updates the metadata through the list
message to inform the server a batch of chunks have been
successfully synchronized, and the server sends an OK mes-
sage in response. Finally in the sync-finish stage, the client
communicates with the control server again to ensure that
all chunks are updated by the commit batch, and refresh the
metadata.

4.2 Why Less Data Cost More Time
Generally, to identify the redundancy in the sync pro-

cess, the client splits data into chunks and calculates their
hashes to find the redundancy. However, chunking with a
large number of hashing operations is computationally ex-
tensive, and the time cost and effectiveness of deduplication
are strongly impacted by the chunking method. Fixed-size
chunking used by Dropbox is simple and fast, but is less ef-
fective in deduplication. Content defined chunking [20] used
by Seafile is more complex and computation extensive, but
can identify a larger amount of redundancy. In our exper-
iment in Section 3.1, when RTT is 200ms, Seafile uses the
content defined chunking to achieve 65% DER. Although
the available bandwidth is sufficient, the complex chunking
method takes too much time hence its total sync time is larg-
er than Dropbox. However, when the RTT is 500ms and the
bandwidth is limited, lower DER leads to lower sync time
by significantly reducing the transmission time. The key
insight from this observation is that it is helpful to dynam-
ically select the appropriate chunking method according to
the channel condition.

4.3 Why the Traffic Overhead Increases
Although delta encoding is a mature and effective method,

it is not implemented in all cloud storage services. One pos-
sible reason is that most delta encoding algorithms work at
the granularity of file, while to save the storage space thus
reducing the cost, files are often split into chunks to man-
age for cloud storage services. Naively piecing together all
chunks to reconstruct the whole file to achieve incremental
sync would waste massive intra-cluster bandwidth.
Instead, Dropbox implements delta encoding at the chunk

granularity. From the decrypted traffic we find that each
chunk has a “parent” attribute to map it to another simi-
lar chunks, and delta encoding is adopted between the two
chunks. Figure 6 shows how Dropbox performs delta encod-
ing at the granularity of chunk when inserting 2MB data at
the head of a 10MB file. When the file is modified, the client
follows the fixed-size chunking method to split and re-index
the file. After re-indexing, the chunks without hash change
are not processed further, so the TUO results of 4MB win-

Figure 5: A typical sync process of Dropbox

Figure 6: An example to explain why the incremental sync
fails in Dropbox.

dow size in Figure 2 are all close to 1. Otherwise, a map
is built based on the relative locations of the original and
modified versions, and delta encoding is executed between
mapped chunk. Thus the delta of C1’ and C1 is 2MB and the
total delta is 6MB, 3 times of the insertion size. Therefore,
now we can clearly understand our observations in Figure 2.
Inserting 3MB data at the head of 40MB file causes nearly
40MB total sync traffic, because after the re-indexing, all
chunks are mapped to different parents. In this case, the
incremental sync fails to only update the changed content.

As discussed in Section 4.1, the metadata is updated after
contents are successfully uploaded. Therefore, for a chunk
in the middle of sync, if it is modified before sync finishes,
the chunk can not be used for delta encoding. In the experi-
ment 2 in Section 3.2, when the modification happens at the
beginning time of the sync process, the client has to upload
both the original and modified versions and thus the TUO
is at least 2. Moreover, in the case that RTT=600ms, every
modification is performed during the uploading process, and
each modified version has to be uploaded entirely.

4.4 Why the Bandwidth Utilization Decreases
Iteration is a key characteristic of the data sync, but may

significantly reduce the bandwidth utilization. There are
several reasons. First, when synchronizing a lot of chunks
smaller than the maximum chunk size, as the client has to

wait for an acknowledgement from the server before transfer-
ring the next chunk, the sequential acknowledgement limits
the bandwidth usage, especially when sending a number of
small files and RTT is high.
Second, although Dropbox incorporates bundling to bun-

dle small chunks into a bigger one (up to 4MB) to mitigate
the problem, we can still see the throughput slumps between
two iterations when synchronizing large files (e.g. 40MB).
Different from other storage services, when transferring mul-
tiple big chunks at 4MB, Dropbox opens up to 4 concurrent
TCP connections during the sync process. At the begin-
ning of a new iteration, the client assigns new chunks for
different connections. If one connection has transferred the
assigned chunk and received the acknowledgement, it will
not immediately start to send the next chunk. Only after
the other three connections have finished transmissions, the
new chunks are assigned. During the iterations, because of
the idle waiting of several connections the throughput re-
duces significantly.
Moreover, we observe that for GoogleDrive, it opens sever-

al new TCP connections, each taking one iteration to trans-
fer one chunk. For instance, it totally creates 100 storage
flows in 100 iterations to synchronize 100 small files. Such
a mechanism would incur additional overhead for opening
a new SSL connection and extend the slow start period,
leading to significant throughput degradation thus reduced
BUE.

5. SYSTEM DESIGN
Improving the sync efficiency in wireless networks is im-

portant for mobile cloud storage services. In light of various
issues that result in sync inefficiency, we propose QuickSync,
a novel system which concurrently exploits a set of tech-
niques over current mobile cloud storage services to improve
the sync efficiency.

5.1 System Overview
To efficiently complete a sync process, our QuickSync sys-

tem introduces three key components: the Network-aware
Chunker (§5.2), the Redundancy Eliminator (§5.3), and the
Batched Syncer (§5.4). The basic functions of the three
components can be summarized as follows: 1) identifying
redundant data through a network-aware deduplication tech-
nique; 2) reducing the sync traffic by wisely executing delta
encoding between two “similar” chunks; and 3) adopting a
delayed-batched acknowledgement to improve the bandwidth
utilization.
Figure 7 shows the basic architecture of QuickSync. The

sync process begins upon detecting a change in the sync
folder (e.g. add or modify a file). First, the Network-aware
Chunker splits an input file through content defined chunk-
ing with the chunk size determined based on the network
condition. Metadata and contents are then delivered to
the Redundancy Eliminator, where redundant chunks are
removed and delta encoding is executed between similar
chunks to reduce the sync traffic for modification operations.
A database is applied to store metadata of local files. Finally
the Batched Syncer leverages a delay-batched acknowledge-
ment mechanism to synchronize all data chunks continuously
to the cloud and conclude the sync process. Like other cloud
storage systems, QuickSync separates the control server for
metadata management from the storage server for data stor-
age. Metadata and file contents are transferred by meta flow

Figure 7: System overview.

and content flow respectively. Next we describe the detailed
design for each component.

5.2 Network-aware Chunker
To improve the sync efficiency, our first step is to identify

the redundant data before the sync process. Although dedu-
plication is often applied to reduce the data redundancy for
storage in general cloud systems, extending existing dedu-
plication techniques for personal cloud storage services faces
two new challenges. First, previous deduplication techniques
mostly focus on saving the storage space [28], improving the
efficiency for large-scale remote backup [22, 14], or only op-
timizing the downlink object delivery [6]. These strategies
are difficult to apply for personal cloud storage because they
often involve huge overhead and require an important prop-
erty named“stream-informed” [28] not included for personal
scenario. Second, a deduplication scheme with aggressive
chunking will incur high computational cost for mobile de-
vices, which may degrade the performance under good net-
work conditions (Section 3.1).

Generally, the chunking granularity is closely related to
the computation overhead and the effectiveness of dedupli-
cation. A more aggressive chunking scheme with very small
chunk size may allow for more effective deduplication, but
would involve higher total computation overhead to identi-
fy the duplicated data over a large number of chunks, and
vice versa. All previous deduplication systems use a static
chunking strategy with a fixed average chunk size. Deriving
from the basic idea of Dynamic Adaptive Streaming over
HTTP (DASH), the basic procedure of our approach is to
adaptively select an appropriate deduplication scheme ac-
cording to the real-time network conditions to reduce the
total sync time. Intuitively, in slow networks, since the
bandwidth is limited, we select aggressive chunking strategy
to identify more redundancy and reduce the transmission
time. When the bandwidth is sufficient, we prefer larger
chunks because of its lower computation overhead. Specifi-
cally, our approach consists of two key strategies as we will
introduce below.

5.2.1 Network-aware Chunk Size Selection
The chunking method in our system is based on the con-

tent defined chunking (CDC), which introduces cut-points
to split an input file into chunks based on contents. When
the number of operations for insertion, deletion or recording
is small, the set of representative hashes for chunks remain
mostly the same, this method helps to improve the dedupli-
cation efficiency. Moreover, as the average chunk size can
be changed to adapt the computational overhead and thus
the effectiveness of deduplication, we can select an appropri-

Figure 8: Virtual Chunks in the server.

ate chunk size to trade off between computational time and
deduplication effectiveness to reduce the total sync time.
To achieve multi-level chunking based on different sizes,

both the client and server of QuickSync store a list of chunk-
ing strategies, along with their deduplication capacity, aver-
age chunk size and computation cost. Selecting strategy i
means to split the input data into chunks with average size
Si by content defined chunking. At the beginning of a sync
process, a client first collects current TCP-level information
and follow the method in [21] to estimate the available band-
width by Available BW = Segment size∗cwnd

RTT
, where both

the RTT and cwnd can be observed in the persistent notifi-
cation flow. Assume the data size for sync is C bytes, the
client will select the chunking strategy i based on the fol-
lowing estimation to minimize the total sync latency:

i = arg min
i∈S

{Ti ∗ C +
(1− βi) ∗ C +Meta Sizei

Available BW
} (1)

where Ti (seconds per byte) and βi are the corresponding
computation time and deduplication ratio of the strategy i
respectively. Meta Sizei is the size of the metadata of the
strategy with chunk size Si. In runtime, a client selects the
chunking strategy that provides the minimum sync latency
corresponding to its network condition.

5.2.2 Virtual Chunks in the Server
When synchronizing data from the server to devices, the

server needs to fetch the chunk content in the storage accord-
ing to the metadata given by the client. In order to respond
to different chunking requirements of the client, the server
needs to store the hashes under different strategies. Howev-
er, it would cost a large amount of storage space if simply
executing all chunking strategies in the list and storing all
their corresponding metadata and chunks.
To support multi-granularity deduplication, we propose

the concept of Virtual Chunk that only stores the offset and
length which can be used to generate the pointers to the
content instead of multiple copies of contents. In an upload-
ing process, after receiving all chunks of a file, the server
forms the file according to its metadata. It then conducts
all other strategies in the chunking strategy list to resplit the
file and generate metadata under various strategies. Instead
of storing several copies of the same file processed by mul-
tiple strategies, the server keeps the Virtual Chunk points
to the corresponding chunk in the original file. When the
server needs to synchronize data to a client, the server first
finds the corresponding chunk through the given metada-
ta. If the chunk found is a virtual one, the server fetches
the corresponding content based on the offset and length of
the chunk recorded. For all Virtual Chunks generated by a
chunking strategy, we add a vblock list, which includes all
hashes of these Virtual Chunks to the metadata. As a re-
sult, the offset of a chunk can be implicitly stored as the
sum of all previous chunk sizes in the vblock list. Therefore,

each Virtual Chunk size only needs to store the length of its
corresponding recorded chunk.

Figure 8 shows an example. Like all other commercial
systems, QuickSync does not transfer contents between two
clients directly. A file is split into two chunks and uploaded
to the server. Then the server takes other strategies to get
three Virtual Chunks that point to the real contents. When
the server needs to update or send the Virtual Chunks, it
fetches the content from the storage based on its pointer.

5.3 Redundancy Eliminator
The Redundancy Eliminator is designed to eliminate the

redundant sync traffic. Ideally, only the modified parts of
the file need to be synchronized to the server through a tech-
nique such as delta encoding. However the effective function
of delta encoding has two requirements. First, the map of
the new to the old version must be identified as the input
for encoding. Second, the two versions for encoding must
be “similar”, otherwise executing the delta encoding will not
provide any benefit but only involves additional computa-
tion overhead. As discussed in the previous section, in the
current cloud storage systems, because all files are stored as
independent chunks distributedly, the delta encoding algo-
rithm is executed between pairs of chunks in the modified
and the original file. Therefore, with the fixed-size chunk-
ing, modification on file may lead to a map between two
“un-similar” chunks. Moreover, a chunk in the middle of the
uploading process cannot be compared to enable delta en-
coding. We employ two techniques to alleviate the above
problems.

5.3.1 Sketch-based Mapping
In QuickSync, once changes are detected and the mod-

ified files are split into chunks, two similar chunks in the
original and the modified files are mapped in two steps. We
first compare the hashes of the new chunks with those of
the original file to identify the unchanged chunks that do
not need to be updated. Further, for the chunks without a
hash match in the original version, we leverage a technique
named sketch to estimate the similarity of chunks in the two
versions. We only build a map between two similar chunks
in the new and old versions to perform delta-encoding. The
chunks without either a hash or sketch match are treated
as “different” chunks and will be transferred directly. We
get the sketch by identifying “features” [22] of a chunk that
would not likely change when there are small data varia-
tions. As one typical approach, a rolling hash function can
be applied over all overlapping small data regions, and we
choose the maximal hash value seen as one feature. We
generate multiple features of the same chunk using different
hash functions. Chunks that have one or more features in
common are likely to be very similar, but small changes to
the data are unlikely to perturb the maximal values. To
better represent a chunk, we get the sketch of the chunk by
calculating the XOR of four different features.

5.3.2 Buffering Uncompleted Chunks
To take advantage of the chunks in the air for delta encod-

ing, we introduce two in-memory queues to buffer the un-
complete chunks that have been processed by the Network-
aware Chunker. The uploading queue temporarily stores all
chunks waiting to be uploaded via network communication,
with each chunk recorded with three parts: the data content,

the hash value and the sketch of it. New chunks from the
Chunker are pushed into this queue and popped up if they
have been completely uploaded. We can thus build a map
between a new chunk and the one found in the uploading
queue.
To handle modification operations, we create an updating

queue to buffer a chunk that finds a sketch match with an-
other chunk either in the server or the local uploading queue.
Each chunk in the updating queue is tagged with the hash
of its matched chunk. Chunks are inserted into updating
queue if a sketch match is found and popped up when delta
encoding for two similar chunks is completed.
Upon file modifications and the triggering of sync, files are

first split into chunks by the Network-aware Chunker. Then
the Redundancy Eliminator executes the two-step mapping
process. The chunk without a sketch or hash match is treat-
ed as a new chunk and inserted into the uploading queue di-
rectly, while the ones found with sketch match are bundled
by the Eliminator along with their hashes and put in the up-
dating queue. An independent updating process is designed
to continuously fetch chunk from the updating queue, and
then calculate the delta between the mapped chunks. The
delta will be inserted into the uploading queue. All data in
the uploading queue are synchronized to the server by the
Batched Syncer.

5.4 Batched Syncer
As discussed in the previous section, the per-chunk se-

quential acknowledgement from the application layer and
the TCP slow start are the main factors that decrease the
bandwidth utilization, especially for the sync of multiple
chunks. To improve the sync efficiency, we design the Batched
Syncer with two key techniques to improve the bandwidth
utilization.

5.4.1 Batched Transmission
Cloud storage services leverage the app-layer acknowl-

edgement to maintain the chunk state. As a benefit, upon
a connection interruption, a client only needs to upload the
un-acknowledged chunks to resume the sync. Dropbox sim-
ply bundles small chunks into a large chunk to reduce the
acknowledgement overhead. Although this helps improve
the sync throughput, when there is a broken connection,
the Dropbox client has to retransmit all small chunks if the
bundled one is not acknowledged.
Our first basic technique is to defer the app-layer acknowl-

edgement to the end of the sync process, and actively check
the un-acknowledged chunks upon the connection interrup-
tion. This method on the one hand reduces the overhead due
to multiple acknowledgements for different chunks and also
avoids the idle waiting for the acknowledgement between t-
wo chunk transmissions, and on the other hand avoids the
need of retransmitting many chunks upon a connection inter-
ruption. The check will be triggered under two conditions.
First, the check will be initiated when the client captures a
network exception, usually caused by the process shut down
or the connection loss at the local side. Second, the failure
of the sync process can be also caused by interruption in the
network that cannot be easily detected by the local devices.
Therefore we design a timer for the sync process. If the sync
process gets stuck for a long time and timeout, the Syncer
will actively terminate the current connection and check the
control server for the missing chunks.

During the transmission, the Syncer continuously sends
chunks in the uploading queue of the Redundancy Elimina-
tor. If the connection is interrupted by network exceptions
or the sync gets stuck for a period of time, the client con-
nects to the control server to query the un-acknowledged
chunks, and then uploads them after the content flow is re-
established.

5.4.2 Reusing Existing Network Connections
The second technique is to reuse the existing network con-

nections rather than making new ones in storing files. While
it may be easy and natural to make a new network connec-
tion for each chunk, the handshake overhead for establish-
ing a new connection is not negligible, and creating many
new connections also extends the period in the slow start s-
tate especially for small chunks. The Batched Syncer reuses
the storage connection to transfer multiple chunks, avoiding
the overhead of duplicate TCP/SSL handshakes. Moreover,
cloud storage services maintain a persistent notification flow
for capturing changes elsewhere. Hence we reuse the notifi-
cation flow for both requesting notification and sending file
data to reduce the handshake overhead and the impact of
slow start. Specifically, both the request and data are trans-
ferred over HTTP(S), so we use the Content-Type field in
the HTTP header to distinguish them in the same TCP con-
nection.

6. SYSTEM IMPLEMENTATION
To evaluate the performance of our proposed schemes, we

build the QuickSync system over both Dropbox and Seafile
platforms.

6.1 Implementation over Dropbox
Since both the client and server of Dropbox are total-

ly close source, we are unable to directly implement our
techniques with the released Dropbox software. Although
Dropbox provides APIs to allow user program to synchro-
nize data with the Dropbox server, different from the client
software, the APIs are RESTful and operate at the full file
level. We are unable to get the hash value, or directly im-
plement delta-encoding algorithm via the APIs.

To address this problem, we leverage a proxy in Amazon
EC2 which is close to the Dropbox server to emulate the
control server behavior. The proxy is designed to generate
the Virtual Chunks, maintain the map of file to the chunk
list and hash the chunk to sketch. During a sync process,
user data are first uploaded to the proxy, and then the proxy
updates the metadata in the database and stores the data
to the Dropbox server via the APIs. Since the data storage
server of Dropbox is built on Amazon EC2, the throughput
between our proxy and Dropbox is sufficient and not the
bottleneck.

To make our Network-aware Chunker efficient and ad-
justable, we use the SAMPLEBYTE [6] as our basic chunk-
ing method. Like other content defined chunking methods,
the sample period p set in SAMPLEBYTE also determines
both the computation overhead and deduplication ratio. We
leverage the adjustable property of p to generate a suite of
chunking strategies with various deduplication capacity and
computation overhead, including the chunk-based dedupli-
cation with the average chunk size set to 4MB, 1MB, 512KB
and 128KB. Each Virtual Chunk contains a 2-byte field for
chunk length.

We use librsync [3] to implement delta encoding. We use
a tar-like method to bundle all data chunks in sync process,
and a client communicates with our proxy at the beginning
of a sync process to notify the offset and length of each chunk
in the sync flow. The timer of our Syncer is set to 60s. We
write the QuickSync client and proxy in around 2000 lines
of Java codes. To achieve efficiency, we design two processes
to handle chunking and transmission tasks respectively in
the client. The client is implemented in Galaxy Nexus with
a 1.2GHz Dual Core CPU, 1GB memory and the proxy is
built on an Amazon EC2 server with a 2.8GHz Quad Core
CPU and 4GB memory.

6.2 Implementation over Seafile
Although we introduce a proxy between the client and

the Dropbox server, due to the lack of full access of data on
the server, this implementation suffers from the performance
penalty. For instance, to perform delta encoding, the proxy
should first fetch the entire chunk from the Dropbox server,
update its content and finally store it back to Dropbox. Even
though the bandwidth between the proxy and the Dropbox
server is sufficient, such an implementation would inevitably
involve additional latency during the sync process.
In order to show the gain in the sync efficiency when our

system is fully implemented and can directly operate over
the data, we further implement QuickSync with Seafile, an
open source cloud storage project. The implementation is
similar to that with use of Dropbox but without the need
of a proxy. We only need to directly modify both the client
and server side source codes to implement our system. Be-
cause only the client software on Linux is open source, we
implement the modified client in a laptop with a 2.6GHz In-
tel Quad Core CPU and 4GB memory. and build the server
on a machine with a 3.3GHz Intel Octal Core CPU, 16GB
memory. We believe our QuickSync can also be implement-
ed in the similar way on other mobile platforms.

7. PERFORMANCE EVALUATION
To evaluate the performance of our schemes, we first in-

vestigate the throughput improvement of using the Network-
aware Chunker, and then show that the Redundancy Elimi-
nator is able to effectively reduce the sync traffic. We further
evaluate the capability of the Batched Syncer in improving
the bandwidth utilization efficiency. Finally, we study the
overall improvement of the sync efficiency using real-world
workloads. In each case, we compare the performances of
the original Seafile and Dropbox clients with those when
the two service frameworks are improved with QuickSync.

7.1 Impact of the Network-aware Chunker
We first evaluate how the Network-aware Chunker im-

proves the throughput under various network conditions.
We collect about 200GB data from 10 cloud storage ser-
vices users, and randomly pick about 50GB as the data set
for uploading. The rest about 150GB data are pre-stored
in the server for deduplication purpose. We repeat the sync
process under various RTT to measure the the sync speed,
defined as the ratio of the original data size to the total sync
time, and the average CPU usage of both the client and serv-
er. The minimal RTT from our testbed to the Seafile and
Dropbox server is 30ms and 200ms respectively.
Figure 9 shows the results. When the RTT is very low

(30ms), since the bandwidth is sufficient, the client selects

the un-aggressive chunking strategy with low computation
overhead to split files, and the sync speed outperforms the
original one by 12%. As the RTT increases, the sync speed
decreases, but our implementations can still achieve high-
er total sync speed by taking advantage of the aggressive
chunking strategies to eliminate more redundancy and thus
reduce the transmission time. Overall, our implementations
can dynamically select an appropriate chunking strategy for
deduplication, which leads up to about 31% increase of the
sync speed under various network conditions.

We plot the CPU usages of QuickSync client and server
in Figure 10. Since the original systems do not change their
chunking strategies based on network conditions, we also
plot their constant CPU usages as the baseline. As RTT
increases, the CPU usages for both the client and server of
QuickSync increase, as more aggressive chunking strategy
is applied to reduce the redundant data. The CPU usage
for Seafile is lower because of more powerful hardware. The
CPU usage of client reaches up to 12.3% and 42.7% in t-
wo implementations respectively which is still within the
acceptable range.

7.2 Impact of the Redundancy Eliminator
Next we evaluate the sync traffic reduction of using our

Redundancy Eliminator with the average chunk size set to
1MB to exclude the impact of adaptive chunking. We con-
duct the same set of experiments for modify operation as
shown in Figure 2, and measure the sync traffic size to cal-
culate their TUO.

In Figure 11, for both flip and insert operations, the TUO
of our mechanism for all files in any position is close to 1, in-
dicating that our implementation only synchronize the mod-
ified content to server. Note that the TUO results for flip or
insert operation on small files (≤ 100KB) have reached 1.3.
The additional traffic is due to the basic overhead of delta
encoding. The TUO results for delete operation are close to
0 because the client does not need to upload the delta be-
sides performing the delta encoding. The results of Dropbox
modification are similar and omitted due to the page limit.

Furthermore, to evaluate the traffic reduction for synchro-
nizing changes of file whose corresponding chunks are on
their way to the server, we conduct the same set of exper-
iments as those in Figure 3. The TUO results in each case
are close to 1, showing that our scheme only needs to syn-
chronize the new contents under arbitrary number of mod-
ifications and any RTT, because the in-memory uploading
queue buffers files in the middle of transmissions to facilitate
delta encoding.

7.3 Impact of the Batched Syncer

7.3.1 Improvement of BUE
To examine the performance of the Batched Syncer in im-

proving the bandwidth utilization, we set the average chunk
size to 1MB to exclude the impact of adaptive chunking.
In Section 3.3, we observe that cloud storage services suf-
fer low BUE, especially when synchronizing a lot of small
files. We conduct the same set of experiments with use of
our proposed schemes.

Figure 12 shows the level of BUE improvement under d-
ifferent network conditions. Our mechanism can improve
up to 61% the bandwidth utilization efficiency for synchro-
nizing a batch of chunks by reducing the acknowledgement

(a) Seafile (b) Dropbox

Figure 9: Speed improved by Network-aware Chunker.

(a) Seafile+QuickSync (b) Dropbox+QuickSync

Figure 10: CPU overhead of Network-aware Chunker

(a) flip (b) insert (c) delete

Figure 11: Traffic utilization overhead reduction of Seafile modification.

overhead. The improvement is more obvious in high RTT
environment where the throughput often experiences big re-
duction especially when the acknowledgements are frequent.

7.3.2 Overhead for Exception Recovery
The per chunk acknowledgement is designed to reduce the

recovery overhead when the sync process is unexpected in-
terrupted. In our Batched Syncer, the client will not wait
for an acknowledgement for every chunk. Now we examine
whether this design will cause much more traffic overhead
for exception recovery. We upload a set of files with different
sizes, and close the TCP connection when half of the file has
been uploaded. After the restart of the program, the clien-
t will create new connection to finish the sync. We record
the total sync traffic and calculate the TUO in Figure 13.
Our results show that in each case, the TUO of QuickSync is
close to 1, and the highest TUO is only about 1.5, indicating
that our implementations will not cause very high overhead
for exception recovery. In our design, before resuming the
sync, the client communicates with the server first to check
the chunks that are not received and need to be transferred.

7.4 Performance of the Integrated System
We assess the overall performance of our implementation

using a series of representative workloads for cloud storage
services on Windows or Android. Each workload combines
a set of file operations, including creation, modification or
deletion, which will trigger corresponding events in the local
file system. The performance results are shown in Table 2.
We first generate the workloads on Windows platform

based on Seafile and its modification. The QuickSync Pa-
per workload is resulted from uploading the files of this
paper, and the Seafile Source generates load by storing al-
l the source codes of the Seafile. Both types of workload
contain a lot of small files and do not contain file modifi-
cation or deletion. Although the traffic size reduction for
the two workloads are small (7.5% and 8.9%), our imple-

mentation reduces the total sync time by 35.1% and 51.8%
respectively. The reduction is mainly caused by bundling
the small files to improve the bandwidth utilization, as the
Seafile Source contains 1259 independent files. The Docu-
ment Editing workload on Windows is generated when we
naturally edit a PowerPoint file in the sync folder from 3M-
B to 5MB within 40min. We capture many creation and
deletion events because during the editing process, tempo-
rary files whose sizes are close to that of the original .ppt
file are created and deleted. Changes are automatically syn-
chronized. Our solution significantly reduces the traffic size,
as QuickSync can execute delta encoding on the temporary
files in the middle of the sync process to reduce the traf-
fic. The Data Backup workload on Windows is a typical
usage for large data backup. This workload contains 37655
files, with various file types (e.g. PDF or video) and sizes
(from 1KB to 179MB). Our QuickSync achieves 37.4% sync
time reduction by eliminating the redundancy and reducing
the acknowledgement overhead to improve the bandwidth
utilization.

We also play the workload on Android platform. The Doc-
ument Editing workload on Android is similar to the editing
workload generated in the above experiment but contains
fewer modifications. Our implementation reduces 41.4% of
the total sync time. The Photo Sharing is a common work-
load for mobile phones. Although the photos are often in
the encoded format and hard to be deduplicated, our imple-
mentation can still achieve 24.1% time saving through the
batched transmission scheme. The System Backup workload
is generated to back up all the app binaries and their data
in a phone via a slow 3G network. As our implementation
adaptively selects aggressive chunking strategy to eliminate
larger amount of the backup traffic and bundles chunks to
improve the bandwidth utilization, 52.9% sync time saving
is achieved.

7.5 Server-side Storage Overhead

(a) Seafile+QuickSync (b) Dropbox+QuickSync

Figure 12: BUE improvement. Figure 13: Recovery overhead.

Workload
(Platform)

of Events
(C/M/D)

Traffic Size
(Origin/Ours/Reduction%)

Sync Time
(Origin/Ours/Reduction%)

QuickSync Paper (W) 74/0/0 4.67MB/4.32MB/7.4% 27.6s/17.9s/35.1%
Seafile Source (W) 1259/0/0 15.6MB/14.2MB/8.9% 264.1s/127.3s/51.8%

Document Editing (W) 12/74/7 64.3MB/12.7MB/80.3% 592.0s/317.3s/46.4%
Data Backup (W) 37655/0/0 2GB/1.4GB/30.6% 68.7m/43.1m/37.4%

Document Editing (A) 1/4/0 4.1MB/1.5MB/63.4% 24.4s/14.3s/41.4%
Photo Sharing (A) 11/0/0 21.1MB/20.7MB/1.9% 71.9s/54.6s/24.1%
System Backup (A) 66/0/0 206.2MB/117.9MB/42.8% 612.3s/288.7s/52.9%

Table 2: Practical performance evaluation for QuickSync using a series of real world representative workloads. W: Windows
platform. A: Android platform. Event C: Creation. Event M: Modification. Event D: Deletion.

QuickSync leverages content defined chunking with small-
er chunk size and dynamically selects an appropriate dedu-
plication scheme based on real-time network conditions to
improve the sync efficiency. Compared with other cloud s-
torage systems using larger fixed-size chunk, our methods
may add the metadata overhead on the server side. Now we
analyze the impact that our design may have on a Dropbox-
like system.
Using the method in Section 4.1, we first measure and

analyze the sync flow of uploading a set of files via Dropbox.
The metadata of Dropbox contains a number of fields to
describe a file, such as modified time, revision number, file
path and a list of chunk hashes. The dynamical chunking
scheme in QuickSync mainly increases the volume of hashes
in the metadata and will not affect other fields. Table 3
shows the size of hashes and its occupancy in the metadata
and the total sync traffic of Dropbox. We find that hashes
occupy a very small fraction in the metadata and the overall
sync traffic.
Further, we analyze and estimate the additional storage

overhead incurred by QuickSync. If we only consider the
hash values in metadata and use the SHA-1 hashing for each
chunk, the storage overhead of a 4MB file in Dropbox is the
sum of contents and metadata, i.e. (4MB+20B). The addi-
tional storage overhead of QuickSync is caused by two fac-
tors: 1) the additional hashes incurred by multi-level chunk-
ing (Section 5.2.1) and 2) the storage of Virtual Chunks (Sec-
tion 5.2.2). Because our implementation of QuickSync uses
4MB, 1MB, 512KB and 128KB chunking, the hash size of a
4MB in QuickSync is 20B*(1+4+8+32)=900B. Moreover, a
4MB file has at most (4+8+32)=44 Virtual Chunks and the
rest one contains the real contents. Since a Virtual Chunk
occupies a 2-byte field for the chunk length, the maximal
cost of Virtual Chunks is (2B*44)=88B. Therefore the total
storage cost of a 4MB file in QuickSync is (4MB+988B).
In summary, QuickSync adds 968B additional storage cost,
which is only 0.02% of the overall storage cost. Consider
that in practice the hash values are only a very small frac-

Data set Hash
(byte)

% in
Metadata

% in Overall
Sync Traffic

1 MB 431 2% 0.004%
10×100 KB 430 13% 0.037%

10 MB 129 7% 0.001%
10×1 MB 430 11% 0.004%

Table 3: The volume of chunk hash and its occupancy in
metadata and overall sync traffic of Dropbox.

tion of the overall storage cost, QuickSync may not incur
much storage overhead on the server side.

8. RELATED WORK
Measurement study. Recently a large number of mea-

surement research efforts have been conducted on cloud s-
torage services [16, 12, 11, 17, 19]. CloudCmp [16] measures
the elastic computing, persistent storage, and networking
services for four major cloud providers. Focusing on person-
al cloud, Drago et al. give a large scale measurement for
Dropbox [12], and then compare the system capabilities for
five popular cloud storage services in [11]. However, all these
previous studies only focus on the desktop services, and all
of them are based on black-box measurement. Li et al. give
the experimental study of the sync traffic, demonstrating
that considerable portion of the data sync traffic is wasteful
[17]. Our work steps closer to reveal the root cause of ineffi-
ciency problem from the protocol view, and we are the first
to study the sync efficiency problem in wireless networks.

System design. There are also many studies about the
system design for cloud storage services [26, 25, 9]. How-
ever they are mostly focusing on enterprise backup instead
of personal cloud. Li et al. propose an adaptive sync defer
(ASD) mechanism, which adaptively tunes its sync defer-
ment to follow the latest data update [18]. The bundling
idea of our Batched Syncer is similar to ASD, but ASD will
incur much more recovery overhead when the sync is inter-

1The chunk hash is salted in practice.

rupted. Moreover, as a middleware solution, ASD can not
avoid the incremental sync failure described in Section 3.2.
ViewBox [27] is designed to detect corrupt data through
the data check sum and ensure the consistency by adopting
view-based synchronization. It is complemented with our
QuickSync system.
CDC and delta encoding. QuickSync leverages some

existing techniques, such as content defined chunking (CD-
C) [20, 28, 22, 14, 5, 6, 23, 7] and delta encoding [24]. Rather
than directly using these schemes, the aim of QuickSync is
to design best strategies to adjust and improve these tech-
niques for better supporting mobile cloud storage services.
In all previous systems using CDC, both the client and serv-
er use the fixed average chunk size. In contrast, QuickSync
utilizes CDC addressing for a unique purpose, adaptively s-
electing the optimized average chunking size to achieve the
sync efficiency. Delta encoding is also not a new idea but
it poses big challenge when implemented with the cloud s-
torage system where files are split into chunks and stored
distributedly. The techniques in Redundancy Eliminator ad-
dress the limitation and wisely use delta encoding to reduce
the sync traffic overhead.

9. CONCLUSION
Despite their near-ubiquity, mobile cloud storage services

fail to efficiently synchronize data in certain circumstance.
In this paper, we first study four popular cloud storage ser-
vices to identify their sync inefficiency issues in wireless
networks. We then conduct in-depth analysis to give the
root causes of the identified problems concurrently exploit-
ing trace study and data decryption. To address the inef-
ficiency issues, we propose QuickSync, a system with three
novel techniques. We further implement QuickSync to sup-
port sync with Dropbox and Seafile. Our extensive evalu-
ations demonstrate that QuickSync can effectively save the
sync time and reduce significant traffic overhead for rep-
resentative sync workloads. This work has attracted in-
tense attention of many experts and companies in IETF
93, Prague, in July 2015. IETF now plans to set up a new
working group to make efforts in standardizing efficient sync
protocols for cloud storage services in the furture.

10. ACKNOWLEDGMENTS
We sincerely thank Matt Welsh for shepherding our paper,

as well as the anonymous reviewers for their valuable com-
ments and feedback. This research was supported by Na-
tional Natural Science Foundation of China (no. 61120106008
and no. 61422206), National High Technology Development
863 Program of China (no.2013AA010401). The research of
Wang is supported by NSF 1408247 and NSF 1247924.

11. REFERENCES
[1] Dynamorio. http://dynamorio.org.

[2] Googledrive.
http://www.google.com/drive/index.html.

[3] librsync. http://librsync.sourceforge.net/.

[4] Onedrive. https://onedrive.live.com.

[5] Seafile source code.
https://github.com/haiwen/seafile.

[6] B. Agarwal, A. Akella, A. Anand, A. Balachandran,
P. Chitnis, C. Muthukrishnan, R. Ramjee, and
G. Varghese. Endre: An end-system redundancy

elimination service for enterprises. In NSDI, pages
419–432. USENIX, 2010.

[7] A. Anand, A. Gupta, A. Akella, S. Seshan, and
S. Shenker. Packet caches on routers: the implications
of universal redundant traffic elimination. In
SIGCOMM. ACM, 2008.

[8] A. Balasubramanian, R. Mahajan, and
A. Venkataramani. Augmenting mobile 3g using wifi.
In MobiSys, pages 209–222. ACM, 2010.

[9] B. Calder, J. Wang, A. Ogus, N. Nilakantan,
A. Skjolsvold, S. McKelvie, Y. Xu, S. Srivastav,
J. Wu, H. Simitci, et al. Windows azure storage: a
highly available cloud storage service with strong
consistency. In SOSP, pages 143–157. ACM, 2011.

[10] Y. Cui, Z. Lai, and N. Dai. A first look at mobile
cloud storage services: Architecture, experimentation
and challenge.
http://www.4over6.edu.cn/others/technical report.pdf.

[11] I. Drago, E. Bocchi, M. Mellia, H. Slatman, and
A. Pras. Benchmarking personal cloud storage. In
IMC, pages 205–212. ACM, 2013.

[12] I. Drago, M. Mellia, M. M Munafo, A. Sperotto,
R. Sadre, and A. Pras. Inside dropbox: understanding
personal cloud storage services. In IMC, pages
481–494. ACM, 2012.

[13] Dropbox. https://www.dropbox.com.

[14] Y. Hua, X. Liu, and D. Feng. Neptune: Efficient
remote communication services for cloud backups. In
INFOCOM. IEEE, 2014.

[15] D. Kholia and P. Wegrzyn. Looking inside the (drop)
box. In 7th USENIX Workshop on Offensive
Technologies (WOOT), Washington, DC, USA, pages
1–7, 2013.

[16] A. Li, X. Yang, S. Kandula, and M. Zhang. Cloudcmp:
comparing public cloud providers. In IMC, pages 1–14.
ACM, 2010.

[17] Z. Li, C. Jin, T. Xu, C. Wilson, Y. Liu, L. Cheng,
Y. Liu, Y. Dai, and Z.-L. Zhang. Towards
network-level efficiency for cloud storage services. In
IMC. ACM, 2014.

[18] Z. Li, C. Wilson, Z. Jiang, Y. Liu, B. Y. Zhao, C. Jin,
Z.-L. Zhang, and Y. Dai. Efficient batched
synchronization in dropbox-like cloud storage services.
In Middleware 2013, pages 307–327. Springer, 2013.

[19] T. Mager, E. Biersack, and P. Michiardi. A
measurement study of the wuala on-line storage
service. In Peer-to-Peer Computing (P2P), 2012 IEEE
12th International Conference on, pages 237–248.
IEEE, 2012.

[20] A. Muthitacharoen, B. Chen, and D. Mazieres. A
low-bandwidth network file system. In SIGOPS. ACM,
2001.

[21] S.-H. Shen and A. Akella. An information-aware
qoe-centric mobile video cache. In MobiCom, pages
401–412. ACM, 2013.

[22] P. Shilane, M. Huang, G. Wallace, and W. Hsu.
Wan-optimized replication of backup datasets using
stream-informed delta compression. TOS, 8(4):13,
2012.

[23] N. T. Spring and D. Wetherall. A
protocol-independent technique for eliminating
redundant network traffic. SIGCOMM, 2000.

[24] A. Tridgell, P. Mackerras, et al. The rsync algorithm,
1996.

[25] M. Vrable, S. Savage, and G. M. Voelker. Cumulus:
Filesystem backup to the cloud. TOS, 5(4):14, 2009.

[26] M. Vrable, S. Savage, and G. M. Voelker. Bluesky: a
cloud-backed file system for the enterprise. In FAST,
page 19. USENIX, 2012.

[27] Y. Zhang, C. Dragga, A. C. Arpaci-Dusseau, and
R. H. Arpaci-Dusseau. Viewbox: integrating local file
systems with cloud storage services. In FAST, pages
119–132. USENIX, 2014.

[28] B. Zhu, K. Li, and R. H. Patterson. Avoiding the disk
bottleneck in the data domain deduplication file
system. In FAST, volume 8, pages 1–14. USENIX,
2008.

