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Abstract 
Fair sharing of bandwidth among tenants in datacenters is important to guarantee prompt execution 

while providing isolation between different jobs. Many existing methods require tenants to provide 

explicit bandwidth demands which is not always possible. We demonstrate that these demands can be 

estimated on hypervisors by real-time observation of a traffic. With implementation we show feasibility 

of fair bandwidth allocation mechanism based on real time traffic measurement. 

Introduction 
Recently, there is a significant interest in datacenter network allocation. Allocations aim to improve 

datacenter network utilization, to provide bandwidth guarantees and to incentivize tenants to share the 

infrastructure.  

Today, a tenant pays to cloud providers on per-VM basis. Recent studies show that network resources are 

not provided uniformly and fairly, many tenants experience high diversity in network bandwidth [1]. The 

tenants' requirement for network quantitative guarantees resulted in many allocation algorithms. These 

allocations aim to achieve a set of desired properties, namely, high-utilization, min-bandwidth guarantees, 

fairness. 

Out of multiple allocation algorithms, we highlight two classes -- static and dynamic allocations. Dynamic 

allocations primary provide weights to the data transfer rates at which TCP congestion control operates. 

NetShare [2], FairCloud [3], and Seawall [4] are examples of dynamic allocation in the literature. On another 

hand, static allocations use pre-calculated at admission controller bandwidth reservations. Examples of 

such allocation methods are Oktopus [1] and SecondNet [5]. These reservations tenants request as a 

simplified model, at the same time provider places these models into the network. Two main forms of 

static allocation models are hose-model and matrix-model. Finally, some of the allocation methods 

attempt to utilize benefits of both classes and provide a hybrid class of dynamic and static allocation.  

Among the benefits dynamic allocations provide – as any implementation of TCP protocol – is high-

utilization: these allocations have work-conserving property. On another hand the isolation and, as a 

result, min-bandwidth guarantee are very hard to impossible to achieve with dynamic methods. Static 

allocations produce better guarantees for the tenants; the tenant which has static allocation will have 

hard bandwidth guarantees, which no any other tenant can break. 
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However, most proposed allocation methods suppose that users’ demands for traffic are known a priori. 

This is rarely the case because any complex distributed application is hard to predict. We argue that 

correct solution for bandwidth allocation problem should estimate demands in real time. 

STEM In a Nutshell 
We propose a novel fair and strategy-proof bandwidth allocation method which doesn’t require traffic 

demands from users to operate – Strategy-proof Task-Enforcement Mechanism (STEM). This mechanism 

is based around the notion of tasks. Task is a set of related flows, where user is interested only in 

completion time of slowest of them, but not in individual completion times. Such related flows often 

emerge in a scatter-and-gather workflow, where some data have to be partitioned between processing 

machines, and results have to be gathered back. In that situation application performance is bounded by 

straggler flows. 

We consider that each tenant has only one job. Utility of each tenant is proportional to a minimal ratio of 

amount of allocated resource to amount of demanded among all resources. We call a set of tenant’s 

demands for all resources — a demand vector. Because each tenant desires to get as much resources as 

possible, we are not interested in absolute values of tenants’ demands. We have to consider only their 

relative values. Therefore, demand vectors of all tenants should be normalized. We suggest to divide all 

demands of a single tenant by the maximal demand of her. This results in all values of demand vectors to 

not exceed 1. As in DRF [6], we call the resource with the maximum demand dominant resource for each 

tenant, as it dominants her demands. To remove requirement of prior demands estimation by users, each 

demand is considered to be either 0 or 1, depending on if tenant needs that particular link for her flow. 

To achieve strategy-proof allocation and exclude any possibility of misbehavior we base our allocation 

mechanism on DRF [6]: utilities of all tenants are forced to be equal, then maximum possible common 

utility is found subject to constraints of links bandwidth.  

To make allocation work-conserving and increase datacenter utilization we do not rate-limit all flows to 

calculated rates, instead we use two classes of priority: part of each flow is marked as a high-priority traffic 

and all excess traffic is marked as a low-priority traffic. Therefore, if all switches in the datacenter have 

two separate outgoing queues, all priority traffic will never be dropped due to congestion, as rates are 

calculate in such a way. This way each tenant has a strategy-proof and fair minimum bandwidth 

guarantee, while low-priority traffic will occupy any remaining capacity without obstruction of calculated 

minimum bandwidth guarantees. 

Implementation 
In our implementation hypervisors are observing outgoing traffic and notify central controller about all 

existing outgoing flows. Central controller calculates allocations and broadcasts them to all hypervisors 

(See Fig. 1). This broadcast is very light, as allocation is essentially a single value for all tenants. Then 

hypervisors are marking corresponding part of each flow as a high-priority traffic.  

Our implementation is observing only a single parameter – existence of a flow. However, many other 

properties can be measured as well, for example: rate demand of a flow, class of a data, flow owner’s 

payment and other parameters. Our allocation mechanism does not need them, however other allocation 

mechanisms may use these different properties to provide more sophisticated and precise bandwidth 

allocation. 



To reduce load on a central controller, hypervisors are signaling about new or expired flows only several 

times per second. Before response from central controller is received about new flows they are entirely 

marked as low-priority traffic. In that way existing but not confirmed yet flows will not degrade minimum 

bandwidth guarantee of other flows. 

Our implementation uses iptables NFQUEUE mechanism to run custom C code to process outgoing traffic. 

Our code observes and modify egress traffic, marking some part of it as a hi-priority packets. It notifies 

central controller, written in a python, about new and expired flows. Central controller, knowing topology 

and existing flows, calculates allocations and broadcasts them. We use mininet network emulator to 

simulate sample datacenter topology. 

Conclusion 
In this work we show that even without prior demands estimation from users it is possible to allocate 

bandwidth in a datacenter fairly in a strategy-proof way. Correct online measurement of traffic properties 

and informing most important parameters out of it to the controller makes the shaping of the traffic more 

sophisticated and optimized. 
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