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Abstract— The Thorup-Zwick (TZ) compact routing scheme
is the first generic stretch-3 routing scheme delivering a nearly
optimal per-node memory upper bound. Using both direct
analysis and simulation, we derive the stretch distribution of
this routing scheme on Internet-like inter-domain topologies. By
investigating the TZ scheme on random graphs with power-law
node degree distributions, Pk � k−γ , we find that the average TZ
stretch is quite low and virtually independent of γ. In particular,
for the Internet inter-domain graph with γ � 2.1, the average
TZ stretch is around 1.1, with up to 70% of all pairwise paths
being stretch-1 (shortest possible). As the network grows, the
average stretch slowly decreases. We find routing table sizes to
be very small (around 50 records for 104-node networks), well
below their theoretical upper bounds. Furthermore, we find that
both the average shortest path length (i.e. distance) d and width
of the distance distribution σ observed in the real Internet inter-
AS graph have values that are very close to the minimums of
the average stretch in the d- and σ-directions. This leads us to
the discovery of a unique critical point of the average TZ stretch
as a function of d and σ. The Internet’s distance distribution is
located in a close neighborhood of this point. This is remarkable
given the fact that the Internet inter-domain topology has evolved
without any direct attention paid to properties of the stretch
distribution. It suggests the average stretch function may be
an indirect indicator of the optimization criteria influencing the
Internet’s inter-domain topology evolution.

Index Terms— Routing, Internet Topology, Simulations, Graph
Theory, Combinatorics, Statistics.

I. INTRODUCTION

The question as to what drives the evolutionary process
of the Internet’s topology is of interest to many researchers.
While various models of its topological structure appear to
describe it reasonably well, most neither aid in understanding
why the Internet’s graph has evolved as it has, nor offer the
“metric” which is effectively being optimized by its imple-
menters as it grows.1 In addition, as the network grows, its
global routing scalability is being stressed [2], leading several
groups to explore alternatives to the present Internet routing
system. We believe that a better understanding of the Internet’s
topological growth process, coupled with knowledge of the
theoretical underpinnings of the routing problem on graphs,
could help in evaluating these proposals (or developing others).
In particular, we are interested in the performance of the most
scalable theoretical routing algorithms on realistic topology
graphs.

To further investigate this relationship, we focus on the
performance of compact routing schemes on scale-free graphs.

1Several authors are currently pursuing such models, however. For one of
the latest examples, see [1].

Compact routing schemes comprise a set of algorithms that
aim to make a good trade-off between stretch versus the
amount of storage required at each vertex for routing tables.
Stretch refers to the (usually worst-case) multiplicative factor
increase of path length between a pair of vertices under a
particular routing scheme versus the length of the shortest
existing path between the same pair. The most efficient stretch-
3 routing scheme for generic (arbitrary) graphs currently
known is due to Thorup-Zwick [3], which we will simply
refer to as “the TZ scheme.” It is known to be optimal, up to
a logarithmic factor, for per-node memory utilization.

We investigate the performance of the TZ scheme on scale-
free graphs because these graphs represent our best current
understanding of the Internet’s inter-AS topological structure.
It is worth mentioning that although we base our analysis on
properties of the real-world Internet, we are not suggesting that
the TZ scheme is ripe for use within the Internet to solve its
scalability problems. Rather, we employ the TZ scheme as a
tool to analyze the fundamental limits for average stretch and
routing table sizes on realistic graphs. The scheme is generic,
so that it can be directly applied to any graphs—to scale-
free graphs, in particular. As we are unaware of any routing
schemes developed specifically for scale-free graphs, we must
turn to generic schemes to pursue our investigation.

One might expect that for scale-free graphs, the majority
of known generic routing schemes would be very inefficient.
Indeed, many routing schemes (including the TZ scheme)
incorporate locality by carefully differentiating between close
and remote nodes. This approach can make routing more
efficient (in the stretch-versus-space trade-off sense, in partic-
ular) by keeping only approximate (non-shortest path) routing
information for remote nodes, while full (shortest path) routing
information is kept for local nodes. In scale-free graphs, with
very low average distances and distance distribution widths,
local nodes comprise huge portions of all the nodes in a
network, so that one might suspect that locality-sensitive
approaches might break for such networks. For a good ex-
ample demonstrating that this might be quite plausible, see
the Appendix, where the stretch factor is found to be very
high for the Kleinrock-Kamoun (KK) routing scheme [4]
applied to the scale-free networks. The choice of the KK
scheme for such analysis is partially driven by the fact that
many relatively recent “routing architecture” proposals [5], [6],
aimed at resolving the Internet routing scalability issues, have
been based on the ideas of [4].
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In analyzing the TZ scheme’s performance for the Internet
graph, however, we find that the situation is quite opposite with
respect to the KK schemes: the TZ scheme produces extremely
low average stretch values and succinct routing tables that turn
out to be well below their theoretical upper bounds.

A. Routing Background

The aim of compact routing schemes is to approach the
optimal stretch-1 (shortest-path) routing but with significantly
reduced memory requirements. It is shown in [7] that for any
stretch-1 routing scheme, there exists a graph of size n and
maximum node degree d, 3 � d < n, such that Ω(n log d) bits
of memory are required at Θ(n) nodes. Since the trivial upper
bound for shortest path full-table routing is also O(n log d),
this result effectively demonstrates incompressibility of generic
shortest path routing. That is to say, if we must accommodate
both graphs of arbitrary topology and with all paths being
stretch-1, we must be willing to have large routing tables.
Although there are some results, [8], showing that the majority
of graphs are “better,” very little can be said conclusively re-
garding the practical implications of these results with respect
to real-world graphs. Thus, in order to study compact routing
on the Internet’s graph, we must turn to the only existing tool
we have for analyzing compact routing performance in all
cases: generic routing schemes. Generic shortest path routing
is incompressible, so if memory space is to be reduced, then
the stretch must be increased.

The memory space lower bound dependence on stretch is
not “continuous.” As shown in [7], any generic routing scheme
with stretch strictly less than 1.4 must use at least Ω(n log n)
bits of memory on some nodes of some graphs. In other words,
the lower bound for generic schemes with stretch s < 1.4
is the same as in the incompressible case of shortest path
routing discussed above (if one considers graphs with d =
Θ(n)). Furthermore, as shown in [9], the lower bound for
schemes with stretch strictly less than 3 is nearly the same as
for shortest path routing—Ω(n) bits of memory on some nodes
of some graphs. The minimum stretch factor that we must be
prepared to accept in order to significantly decrease memory
requirements below the incompressible limits is therefore 3.

Cowen introduces a simple stretch-3 routing scheme with a
local memory space upper bound of O(n2/3 log4/3 n) in [10].
Thorup and Zwick improve upon Cowen’s result and deliver
a per-node space upper bound of O(n1/2 log1/2 n) in [3].2

We call these two schemes the Cowen and TZ schemes,
respectively. The local memory space upper bound provided
by the TZ scheme is nearly optimal (up to a logarithmic factor)
because, as demonstrated in [11], any generic routing scheme
with stretch strictly less than 5 must use at least Ω(n1/2) bits
of memory on some nodes of some graphs. To the best of our
knowledge, the TZ scheme is the only known generic stretch-
3 routing scheme delivering a nearly optimal local memory
upper bound. For this reason, we use it as the basis for our
analytic work and simulations below.

2They also show how to implement routing decisions at constant time per
node.

B. Scale-free networks

Until fairly recently, most random graph analyses have been
based on classical Erdős-Réni random n-node graphs [12],
which have links between every pair of vertices with the
uniform probability p. The ensemble of such graphs is called
Gn,p and their average vertex degree is k � np. For large n, the
vertex degree probability distribution for these graphs is the
quickly-decaying Poisson distribution with an exponentially
small number of high-degree nodes, Pk � k

k
e−k/k!, and

average distance is d � log n/ log k [13]. These graphs are
uncorrelated,3 and their entire statistical properties can be
derived from this vertex degree distribution.

Almost all the networks observed in nature differ drastically
from the Gn,p graphs. For our work, the most important
difference is an inconsistency between the average distance
and average vertex degree predicted by the Erdős-Réni model
for the Internet. In the real Internet inter-domain 11000-node
graph, k � 5.7 and d � 3.6 [14], while the G11000,5.2×10−4

graphs have d � 5.3. The Gn,p graphs of the same size with
the right average distance d � 3.6 would have to have the
average degree k � 14. The simultaneously small values of
the average distance and average vertex degree in the Internet
necessarily imply a larger portion of its nodes are high-degree
than in a comparably-sized Gn,p graph. In other words, the
vertex degree distribution must be fat-tailed. The power-law
distribution, Pk � k−γ , one of such fat-tailed distributions, is
what has been observed in many real-world networks, with the
exponent γ ranging between 2 and 3. For the Internet inter-
domain graph, γ � 2.1 [15], [14].

Both the Gn,p graphs and graphs with fat-tailed degree
distributions are often said to possess the small-world property,
[16], to emphasize that they have extremely low average
distances (for networks of such size), even though average
distances in Gn,p graphs are only slightly higher. Networks
with power-law degree distributions are also called scale-free
since their node degree distribution lacks any characteristic
scale, [17], in contrast to the Gn,p graphs with the narrow
Poisson degree distribution centered around the characteristic
average value k � np.

The most popular model for growing scale-free networks
uses linear preferential attachment by Barabási and Albert
(BA), [17]. The BA model is very simple; it does not have
external parameters, and in its “pure” form, it predicts γ = 3.
The model can be easily modified to produce other values of
γ, but its ability to help explain the evolutionary processes
influencing the growth of the Internet has been questioned
in [18], [19]. In particular, in [18], it is noted that the BA
model and its derivatives are capable of reproducing what has
been already measured but fail to predict correctly anything
new about the Internet topology growth.4 Construction of
explanatory models capturing elements of the actual factors

3That is, vertex-vertex degree correlations are absent.
4A good example is the power-law decay of the clustering coefficient.

Models reproducing this effect were constructed only after it had been
observed in real networks.
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governing the Internet evolution is a hot topic of Internet-
related research these days [1].

II. COMPACT ROUTING SCHEMES

In this section, we briefly review the Cowen and TZ schemes
and establish the terminology and notation we will require.
Both schemes are very simple. They involve four separate
components: the landmark set (LS) construction procedure,
routing table construction, labeling, and routing (message
forwarding) function. The TZ scheme differs from the Cowen
scheme by improving only the LS construction procedure.

Both schemes operate on any undirected connected graph
G = (V,E) with positive edge weights. Let n = |V | be the
graph size, δ(u, v) be the distance (in hops) between a pair
of nodes u, v ∈ V , L be the LS, L(v) be a landmark node
closest to node v ∈ V , and C(v) be v’s cluster, defined for
∀v ∈ V as the set of all nodes c that are closer to v than to
their closest landmarks,

C(v) =
{

c ∈ V
∣∣ δ(c, v) < δ(c, L(c))

}
. (1)

Clusters are similar to Voronoi diagrams but they can intersect.
If l ∈ L, then L(l) = l and C(l) = ∅ by definition. If L is
empty, then for ∀v ∈ V , L(v) = ∅ and C(v) = V .

The TZ LS construction algorithm iteratively selects land-
marks from the set of large-cluster nodes T . At the first
iteration, T = V and every node t ∈ T is selected to
be a landmark with a specific uniform probability q/n with
q = (n/ log n)1/2. The expected LS size after the first iteration
is q. During subsequent iterations, T is redefined to be a set of
nodes that have clusters of size greater than a specific threshold
q̃ = 4n/q,

T =
{

t ∈ V
∣∣ |C(t)| > q̃

}
, (2)

and additional portions of landmarks are selected from T with
a uniform probability q/|T |. The iterations proceed until T is
empty.

Every node v ∈ V then calculates its outgoing port for
the shortest path to every l ∈ L and every c ∈ C(v). This
is the routing information that is stored locally at v. As one
can see, the essence of the LS construction procedure is the
right balance between the LS and cluster sizes (or, effectively,
between q and q̃). The cluster sizes are upper-bounded by
definition (2), and the involved part of the proof in [3] is
to demonstrate that the algorithm terminates with a proper
limit for the expected LS size, which turns out to be 2q log n.
This guarantees the overall local memory upper bound of
O(n1/2 log1/2 n).

The label of node v (used as its destination address in packet
headers) is then a triple of its ID, the ID of its closest landmark
L(v), and the local ID of the port at L(v) on the shortest
path from L(v) to v. With these labels, routing of a packet
destined to v at some (intermediate) node u occurs as follows:
if v = u, done; if v ∈ L ∪ C(u), the outgoing port can be
found in the local routing table at u; if u = L(v), the outgoing
port is in the destination label in the packet; otherwise, the
outgoing port for the packet is the outgoing port to L(v)—
the L(v) ID is in the label and the outgoing port for it can

be found in the local routing table. The demonstrations of
correctness of the algorithm and that the maximum stretch
is 3 are straightforward ([10], [3]).

III. ANALYTICAL RESULTS

In this section, we provide analytical expressions for the
TZ stretch distribution on a small-world graph with a given
distance distribution.

To obtain our results we make a simplifying assumption:
we consider only the first iteration of the TZ LS construction
algorithm. There are two justifications making this assumption
reasonable. First, as shown in [11], the first iteration guarantees
that the average cluster size is n/q; the subsequent iterations
guarantee that all cluster sizes are no larger than 4n/q. There-
fore, the error introduced by this assumption for the average
stretch is small as we see in the next section. Secondly, we
are concerned with small-world graphs which have very short
average distances and narrow distance distributions. Indeed, if
there are no long distances in a graph, then even after just the
first iteration, the majority of clusters are small.

For the rest of this section, we let q denote the actual size
of the LS (q = |L|) and D be the graph diameter (i.e. the
maximum shortest path length in the graph). We also denote
the distance p.m.f. and c.d.f. by f(d) and F (d), respectively.
With D being the graph diameter, d ∈ {1 . . . D}.

Let w and v be independently selected random vertices
from the random graph G = (V,E) corresponding to a source
and destination node, respectively. We introduce the following
three random variables X , Y , and Z:

X = δ(w,L(v)), p.m.f. ≡ pX(x), (3)

Y = δ(v, L(v)), p.m.f. ≡ pY1(y), (4)

Z = δ(w, v), p.m.f. ≡ pZ(z) = f(z). (5)

These random variables correspond to the distances from some
random node w to the landmark nearest another random node
v, the distance from that landmark to v, and the actual shortest
path between the two random nodes. From these, we may
construct another random variable, S∗, defined when w �= v
to describe the stretch value

S∗ =
X + Y

Z
. (6)

This expression for stretch is approximate for two reasons.
First, it does not account for stretch-1 paths to destinations
in the local cluster of W . Second, it does not incorporate the
shortcut effect. Recall that the Cowen routing algorithm is
such that if destination v �∈ L and if a message on its way to
L(v) passes some node u

∣∣ v ∈ C(u), then the message never
reaches L(v) but instead goes along the shortest path from u to
v. To refine our approximation, we correct the above definition
of S∗ to form S as follows:

S = S(X,Y,Z) =




1 if Z < Y ,

1 if Z < X ,

1 if Z = 0,
X+Y

Z otherwise.

(7)
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Note that the first case on the r.h.s. of (7) accounts exactly for
the stretch-1 paths to the destinations in the local cluster (cf.
definition (1)), while the second case accounts approximately
for the shortcut effect as shown in [21].

With the above notations, the p.m.f. for the distance Yi

between a random node and its i’th closest landmark is very
similar to the p.d.f. for order statistics (see, for example, [20]).
One can show (cf. [21]) that

pYi
(d) = i

(
q

i

)
F (d)i−1f(d)(1 − F (d))q−i. (8)

The p.m.f. for the average distance to all landmarks from a
randomly-selected node is

pX(d) =
1
q

q∑
i=1

pYi
(d). (9)

Since landmarks are just q random nodes, pX(d) is equivalent
to f(d),

pX(d) = f(d)
1
q

q∑
i=1

i

(
q

i

)
F (d)i−1(1 − F (d))q−i

= f(d).

(10)

Our problem now is to find the p.m.f. pS(s) for the random
variable S. If X , Y , and Z were independent and uncon-
strained then pS(s) would be given by a simple sum over the
joint distribution where pXY Z(x, y, z) = pX(x)pY1(y)pZ(z).
They are not independent, however, because they are defined
in equations (3)-(5) on the same random events. Furthermore,
the form of their definition results in the triangle inequality,

|X − Y | � Z � X + Y, (11)

which causes some portions of the joint p.m.f to be zero. As
such, the complete joint p.m.f. we require is derived in [21]
to be

pXY Z(x, y, z) =
pX(x)pY1(y)pZ(z)It(x, y, z)

F (x + y) − F (|x − y|) , (12)

where the denominator is positive and the “triangle” indicator
function is defined as follows

It(x, y, z) =

{
1 if |x − y| � z � x + y,

0 otherwise.
(13)

The intuition behind equation (12) is as follows. We are
selecting three random nodes on a graph. These nodes form
a triangle. The distance distribution of one of the triangle’s
sides pY1(y) is special (given by the LS construction proce-
dure). The probability mass is therefore concentrated only in
the feasible combinations of x, y and z (i.e. those for which
the triangle inequality holds). The denominator normalizes the
product to form a proper p.m.f.

Using equation (12), the stretch distribution pS(s) and the
average stretch s are computed as follows:

pS(s) =
D∑

x=1

D∑
y=1

D∑
z=1

pXY Z(x, y, z)|S(x, y, z) = s (14)

s =
∑

s

s · pS(s) (15)

For the average stretch, the summation in equation (15) is over
the finite set of rational stretch values s bounded above by 2,
as follows from equation (7).

Equations (14) and (15) are our final analytical results that
we require for the numerical evaluations of the next section.
Of particular note is that the stretch distribution and average
depend only on f(d) and q.

IV. SIMULATION AND NUMERIC RESULTS

We are now ready to substitute the Internet inter-AS distance
distribution into the analytical expressions of the previous sec-
tion. Because the Internet is an evolving network, it contains
vertex-vertex correlations [22], and so to fully achieve our
immediate goal, we would need to know an analytic result
for the distance distribution in correlated scale-free networks.
Unfortunately, this problem has not yet been solved.5 Surpris-
ingly, the deterministic scale-free graph model by Dorogovt-
sev, Goltsev, and Mendes (the DGM model) [24] analytically
produces the Gaussian distance distribution, which is very
close to the distance distribution observed in the real Internet
inter-domain graph [22]. Given this observation, we choose
to parameterize distance distributions in small-world graphs
we consider in this section by Gaussian distributions. Using a
discrete form of the Gaussian distribution as the distance p.m.f.
f(d) from the previous section transforms equations (14)
and (15) into expressions that cannot be evaluated analytically,
so that we retreat to numeric evaluations with f(d) taken to
be an explicitly normalized Gaussian,

f(d) = c e
− 1

2

(
d−d

σ

)2

, (16)

where c is s.t.
∑D

d=1 f(d) = 1, and d and σ are respectively
the average distance and the width (standard deviation) of the
distance distribution. Distributions pX(x) and pY1(y) are also
explicitly normalized. Variables X , Y , and Z, defined in (3)-
(5), take integer values within the following ranges:

D =
[
d

]
+

⌈
10σ

√
2
⌉

, (17)

X,Y = 1 . . . D, (18)

Z = max (1, |X − Y |) . . . min (D,X + Y ) , (19)

where
[
d

] ≡ round
(
d
)

and diameter D becomes a distance
distribution cutoff parameter, f(d) 	 1, ∀d > D since
f(D)/f(d) � e−100. The TZ LS size q (cf. Section II) is
rounded, q =

[
(n/ log2 n)1/2

]
.

5Although, there are some recent analytical results on distance distributions
in uncorrelated scale-free graphs, [23].
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For the following simulation results, we developed our own
TZ scheme simulator and used it on graphs produced by the
PLRG generator [25]. For a given parameter set, all the data
is averaged over 10 random graphs. All average graph sizes n
are between 10, 000 and 11, 000 unless mentioned otherwise.

A. Distance distribution

While the PLRG generator has been found to produce
topologies largely consistent with those observed in the In-
ternet inter-AS graph [28], it outputs uncorrelated graphs,
and, hence, there are some concerns regarding its capability
of reproducing all the features of strongly correlated nets,
such as the Internet. However, since the stretch distribution
is a function of the distance distribution and the graph size
only (Section III), all we need from a graph generator for
our purposes is that distance distributions in graphs produced
by it be close to distance distributions observed in real-world
graphs. Based on the experiments performed in [28], one can
expect that the distance distribution in PLRG-generated graphs
with the node degree distribution exponent γ = 2.1 should be
close to the one in the Internet. We find that it is indeed so.
See Fig. 1(a) for details.

We then proceed as follows. Paying special attention to the
value of the node degree distribution exponent γ equal to
2.1, which is observed in the Internet, we generate a series
of graphs with γ ranging from 2 to 3, and calculate their
distance distributions. We fit these distributions by explicitly
normalized Gaussians (16) yielding values of d and σ that
we use in numerical evaluations of our analytical results. For
fitting, we use the standard non-linear least squares method.
All fits are very good: the maximum SSE we observe in our
fits is 0.003 and the minimum R-square is 0.9905.

The values of d and σ in fitted Gaussians are slightly off
from the means and standard deviations of distance distribu-
tions in generated graphs as depicted in Fig. 1(b). In fact, Fig.
1(b) is a parametric plot of σ(d) with γ being a parameter. We
observe an almost linear relationship between d and σ with
such parametrization. Note that the almost linear relationship
between the distance c.d.f. center and width parameterized by
γ is analytically obtained in [23] as well. We further discuss
this subject in Section V. In Fig. 1(c,d), we show fitted d and
σ as functions of γ (cf. with the results in [23], [29]).

Average graph sizes for different values of γ are slightly
different, but the dependence of d and σ on n (not shown)
is negligible compared to their dependence on γ. This is in
agreement with [23], [29].

B. Stretch distribution

We obtain a very close match between the simulations and
analysis of the average TZ stretch and stretch distribution. The
average stretch as a function of γ is shown in Fig. 2(a). For the
Internet-like graphs, γ = 2.1, the average stretch we observe
in simulations is 1.09 and the average stretch given by (15)
with f(d) in (16), with d = 3.4 and σ = 0.9, is 1.14. Thus,
we find that the average stretch is very low.

TABLE I

THE TOP TEN STRETCH VALUES AND PERCENTAGE OF PATHS ASSOCIATED

WITH THEM.

Stretch Analysis (%) Simulations (%)

1 58.7 70.8
4/3 16.0 13.1
5/4 14.8 9.71
3/2 4.95 2.33
5/3 2.88 0.731
6/5 2.10 2.54
2 0.434 0.210

7/5 0.173 6.77 × 10−2

7/6 5.20 × 10−2 0.460
8/7 3.01 × 10−4 7.42 × 10−2

Furthermore, while both the average distance and distance
distribution width in power-law graphs do depend on γ (cf.
Fig. 1(c,d)), the average stretch does not. We delay the
discussion of this topic until Section V.

The stretch distributions obtained both analytically, (14),
and in simulations are shown in Fig. 2(b). The sets of signif-
icant stretch values (that is, stretch values having noticeable
probabilities) match between the analysis and simulations. The
top ten stretch values corresponding to virtually 100% of paths
are presented in Table I.

We notice that a majority of paths (up to ∼ 71% according
to the simulations) are shortest. There are only a very few sig-
nificant stretch values for the rest of paths. All the significant
stretch values are below 2.

The small amount of stretch values with noticeable proba-
bilities is due to the narrow width of the distance distribution.
Indeed, in ∼ 86% cases, two random nodes are either 3 or 4
hops away from each other. That is, the probability for X or
Z to be either 3 or 4 is ∼ 0.86, see Fig. 1(a). In ∼ 82% cases,
a random node is just one hop away from its closest landmark,
pY1(1) ∼ 0.82. This explains why stretch-4/3 (X = 3, Y = 1,
and Z = 3) and stretch-5/4 (X = 4, Y = 1, and Z = 4) paths
are most probable among stretch s > 1 paths in Table I.

In Fig. 2(c), the analytical results for the average stretch as a
function of the graph size are shown. Note that dependence on
n in (15) is only via the LS size q. We present data for the case
when d and σ are fixed at their values observed in the Internet,
and the case when they are allowed to scale as in the DGM
model. In both cases, the average stretch slowly decreases
as the network grows, although this decrease is spread over
multiple orders of magnitude of n and the stretch change is
confined to a narrow region between 1.3 and 1.1. We also
notice that after a certain point, the stretch stops decreasing.
Although it becomes very small, it does not reach its minimal
value 1.

Finally, in Fig. 2(d), we report the simulation data on the
average cluster and LS sizes. (Recall that the sum of the cluster
and LS sizes in the TZ scheme is the number of records in
the local routing tables.) We notice that they are well below
their theoretical bounds. Indeed, for the Internet-like graphs
we studied, n ∼ 104, γ ∼ 2.1, this sum is ∼ 52, while the
theoretical upper bound, 6(n log n)1/2, is ∼ 2200.
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Fig. 1. a) The distance distributions. The circles represent the distance distribution from a typical AS (AS #1221) averaged over a period of approximately
March-May, 2003. (The source of data is [26]; for other measurements, see [14], [27].) The mean and standard deviation is 3.7 and 0.9 respectively. The
distance distribution in PLRG-generated graphs with γ = 2.1 is shown by squares. The standard deviation is the same as before, the mean is 3.6. The
solid line is the Gaussian fit of the PLRG distribution, d = 3.4 and σ = 0.9. b) The means and standard deviations (squares) of distance distributions in
PLRG-generated graphs with γ = 2.0, 2.1, . . . , 3.0 (from left to right), and the corresponding values of d and σ (crosses) in their Gaussian fits. The fitted
values of d and σ as functions of γ are shown in (c) and (d) respectively. The Internet value of γ = 2.1 is circled in (b)-(d).

C. Gn,p graphs

Looking at Figs. 2(a,c), one may be tempted to assume that
the average stretch just moderately depends on n and does not
depend on either d or σ for a wide class of random graphs.

To demonstrate that this is incorrect, we consider the most
common class of random graphs, Gn,p. We take n ∼ 104 and
choose p to match approximately the Internet average distance
(p ∼ 1.3 × 10−3) and average node degree (p ∼ 5.7 × 10−4).
The analytical and simulation results for the average stretch
in these two cases are presented in Table II. We find that
the average stretch is substantially higher than in the case of
random graphs with power-law node degree distributions.

V. MINIMUM STRETCH AND THE INTERNET GRAPH

Our investigation so far suggests that the average TZ stretch
depends strongly on the characteristics of the graph distance
distribution—its average distance and width, in particular.
Recall that now we are taking the distance distribution in a

graph to be Gaussian, (16), and, hence, the average TZ stretch
s in (15) is a function of the average distance d and the width
of the distance distribution σ, s ≡ s(d, σ). At this point, we
wish to explore the analytical structure of s(d, σ) in more
detail.

The natural starting point is to fix either d or σ to their
observed values in the Internet, (3.4 and 0.9 respectively), and
vary the other. This results of this exercise are illustrated in
Figures 3(a,b). The left graph shows the stretch values when
σ is fixed at 0.9 and d is allowed to vary between 0 and
7. The right graph shows the stretch values when d is fixed
at 3.4 and the width σ is allowed to vary between 0 and 7.
To our great surprise, we discover that these two functions
have unique minimums and that the point corresponding to the
Internet distance distribution (the large dots, which we will call
the “Internet point”) are very close to them. In other words,
one may get an impression that the Internet topology has been
carefully “crafted” to have a distance distribution that would
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Fig. 2. a) The analytical results (circles) and simulation data (squares) for the average TZ stretch as a function of γ. b) The same for the TZ stretch
distribution with γ = 2.1. c) The analytical data for the average stretch as a function of the graph size. The dashed line corresponds to the case when the
distance distribution parameters d and σ are fixed to the values observed in the Internet. The solid line presents the data when d and σ scale according to the
DGM model. d) The simulation data for the LS (circles) and cluster (squares) sizes. In the Internet case, γ = 2.1, the average graph size in simulations is
10,687, the average LS size is 50.0, and the average cluster size is 2.43.

TABLE II

THE AVERAGE TZ STRETCH ON THE Gn,p GRAPHS.

n p Avg. degree k (d, σ) in graphs (d, σ) in Gaussian fits s (analysis) s (simulations)

104 1.3 × 10−3 13 (3.9, 0.6) (3.9, 0.5) 1.51 1.60
104 5.7 × 10−4 5.7 (5.5, 0.9) (5.6, 0.8) 1.37 1.50

(nearly) minimize the average TZ stretch. Of course, this can
be only an impression and not an explanation since the Internet
evolution, as we know it today, has had nothing to do with
stretch.

The next question we have to ask is if the minimums we
observe in Fig. 3(a,b) correspond to a true local minimum of
the stretch function. Our analytical results allow us to construct
Fig. 3(c), where the stretch function is plotted against both d
and σ. Note that not all combinations of (d, σ) correspond
to Gaussian-like distance distributions. Indeed, when σ > d,
f(d) from (16) looks more like an exponential decay since
it is cut off from the left by condition d � 1. Also, when
σ is very small, (corresponding to highly regular graphs like

complete graphs, stars, etc.), the peculiar peak formation in
the σ ∼ 0 area in the picture occurs. In this region, accurate
computation of the stretch requires detailed knowledge of the
particular graph topology.6

The region of primary interest to us, and which corresponds
to real-world networks where our Gaussian model is likely
to be most accurate, is when σ is somewhat greater than 0
and somewhat less then d. Here, we observe a concave area
in a form of a channel between the other regions described
above. This area, which we shall term the minimal stretch

6Note, however, that for the complete network case, d = 1, σ = 0, we
obtain the correct answer for the average stretch, 2. For detailed explanation
of the peak structure, see [21].
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Fig. 3. a),b) The average stretch as functions of d with σ = 0.9 and of σ with d = 3.4 respectively. The Internet is represented by the dots. c) The average
stretch as a function of d and σ. The Internet is represented by the dot. The stretch minimums along the d- and σ-axes, Md and Mσ , are the light-grey and
black lines respectively. d) The projection of (c) onto the d-σ plane. The solid bottom and top lines represent respectively Md and Mσ (the light-grey and
black lines from (c)). The two dashed lines are their linear fits in the MSR. The crosses are the same as in Fig. 1(b), the bottom-most dashed line being their
linear fit. The Internet, γ = 2.1, is circled. The shaded area is MI from the text. The plus is the point with the average distance observed in the Internet and
the Gaussian width predicted by the DGM model, d = 3.4, σ = 1.1. The diamond and square are the distance distributions of the Gn,p graphs from Table II
matching the Internet average distance and node degree. e) The projection of (c) onto the d-s plane. The notations are the same as in (d). The graph sizes
n ∼ 104 everywhere.
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region (MSR), is characterized by particularly low stretch
values. The width and depth of the MSR slowly increase as
(d, σ) grow. For small (d, σ), the MSR has a unique critical
point, which we call the MSR apex. The Internet point is
located very close to the apex, which is characterized by the
shortest distance between the sets of minimums of the average
stretch function s(d, σ)—along the d- and σ-axes. We denote
these two sets by Md and Mσ respectively. We find that Md

and Mσ almost touch each other at the apex.
The MSR apex can be more easily observed in Fig. 3(d)

showing a projection of Fig. 3(c) on the d-σ plane. The solid
lines represent the above two sets of minimums forming the
MSR, and the Internet point is very near their closest segment.

An opportunity to look at the apex from yet another angle
is presented in Fig. 3(e) showing a projection of Fig. 3(c)
on the d-s plane. We see that starting from the apex, as d
increases, the minimum stretch values along the d- and σ-
directions become virtually equal and slowly decrease as d
grows. We also note that Gn,p graphs are far away from the
apex and that they have average stretch values that are far from
minimal.

We can see now that the apex is indeed a critical or “phase
transition” point since it is located at the boundary of the
two regions of the average stretch function. The first region,
the MSR, is characterized by lowest possible stretch values
corresponding to distance distributions observed in real-world
graphs. The second region, with substantially higher average
stretch values, corresponds to distance distributions in more
regular graphs.

To illustrate this point in more detail, we turn our at-
tention back to Fig. 3(d). We observe that the two sets of
minimums, Md and Mσ , are linear when σ > 1. The dashed
lines represent the linear fits of Md and Mσ in the area
with σ > 1. The exact location of the intersection of these
fits is (d

�
, σ�) = (3.16, 0.97). If the linear form of Md and

Mσ sustained for σ < 1 as well, then Md and Mσ would
intersect at (d

�
, σ�), where we would observe a stationary7

point of s(d, σ), which we could then test for the presence
of an extremum of the stretch function. This does not happen,
however. Instead, as d and σ become small, the linear behavior
breaks near the apex due to increasingly “more discrete”
structure of the distance distribution ([21]).

In the extended version of this paper [21], we show that
linearity of Md and Mσ can be analytically derived from the
fact that the distance distribution is taken to be Gaussian. Of
course, this does not explain why the Internet is so close either
to the MSR or to its apex.

The linear form of Md and Mσ in the MSR sheds
some light on a closely related issue of why the aver-
age stretch is virtually independent of γ. In Fig. 3(d), the
shaded area represents a set of (d, σ), for which the aver-
age stretch is approximately the same as for the Internet,
MI =

{
(d, σ)

∣∣ s(d, σ) ∼ s(3.4, 0.9)
}

. We see that in the

7Recall that a function has a stationary point where all its first-order partial
derivatives are zero. Thus, we can call the apex a quasi- stationary point
emphasizing that ∂s/∂d and ∂s/∂σ are both nearly zero at the apex.

MSR, the MI boundaries are almost parallel straight lines.
Therefore, if the average stretch is to be independent of γ,
which is observed in Section IV-B, then the points representing
distance distributions in power-law graphs, (dγ , σγ) from
Fig. 1(b), should lie along the MI boundaries, and this is what
indeed happens. Yet again, the linear relation between dγ and
σγ in the power-law graphs, and the fact that this relation
is just as required for the average TZ stretch being virtually
independent of γ, come from two seemingly disjoint domains.

To finish the list of various “coincidences,” we construct a
linear fit of (dγ , σγ) (the bottom-most dashed line in Fig. 3(d)).
This line is located exactly at the MSR edge. Indeed, in
the area of higher values of σ (that is, in the MSR), the
stretch function is completely concave, while for smaller σ,
we observe multiple convex and concave regions caused by
“more discrete” structure of the distance distribution. In other
words, the line corresponding to scale-free graphs is right
at the boundary between “more random” and “more regular”
graphs.

Furthermore, the Internet point, γ = 2.1, lies on this
line, and our numeric analysis shows that the Internet value
of γ = 2.1 minimizes the distance between the linear fit of
(dγ , σγ) and (d

�
, σ�), which is the intersection of the linear

fits of Md and Mσ . In other words, the Internet distance distri-
bution is the point that is closest to the MSR apex, compared to
distance distributions in all other scale-free graphs with power-
law node degree distributions.

VI. CONCLUSIONS

We find that the TZ routing scheme applied to the Internet
inter-AS graph results in a very low average stretch and
succinct routing tables that are well below their upper bounds.
The primary reason why the average stretch is of a great
concern is that the TZ scheme is not a stretch-1 scheme,
while Internet inter-domain routing is essentially shortest path
routing.8 Thus, any stretch s > 1 routing scheme applied to the
Internet would involve augmentation, in one form or another,
of the routing information provided by the scheme with the
shortest path routing information for some (or all) non-shortest
paths.

Our principal finding, that the TZ stretch on the Internet
graph is reasonably low, opens a well-defined path for fu-
ture work in the area of applying relevant theoretical results
obtained for routing to realistic scale-free networks. One of
the immediate next problems on this path is the performance
analysis of dynamic low-stretch routing schemes on scale-
free graphs. The TZ scheme is not optimal for the dynamic
case since it labels nodes with topology-sensitive information.
In other words, it is not name-independent. As soon as the
topology changes, nodes need to be relabeled. Significant
progress in construction of name-independent low-stretch rout-
ing schemes has been recently made by Arias, Cowen, et al.
in [30].

8A routing scheme that would prevent, for example, a pair of ASs from
utilizing a peering link between them is not realistic, of course.
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More importantly, however, we find that the Internet shortest
path length distribution is at the minimal distance from the
unique critical point of the average stretch function. At present
we lack sufficient information to show cause for this effect,
but we do believe it strongly suggests the average stretch
function may be an indirect (or even direct) indicator of
some yet-to-be discovered process that has influenced the
Internet’s topological evolution. In other words, a rigorous
explanation of this phenomenon would probably require much
deeper understanding of the Internet evolution principles and
demonstration of a link between them and the TZ scheme.
This question is of great interest, as the fundamental laws
governing the Internet evolution remain unclear. Therefore, a
proper explanation of this effect may help us in our intent to
move, perhaps along the lines of [1], from purely descriptive
Internet evolution models to more explanatory ones, in the
terminology of the program outlined in [18].
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APPENDIX

In this appendix, we calculate a rough estimate of the stretch
factor of the Kleinrock-Kamoun (KK) hierarchical routing
scheme, [4], applied to the observed Internet interdomain
topology. We find that the stretch is very high, which is
consistent with the observation made in [4] that the approach
used there works reasonably well only for sparsely connected
networks. The scale-free networks, on the contrary, are ex-
tremely densely connected.

Recall that [4] assumes the existence of a hierarchical
partitioning of a network of size n into m levels of clusters.
Each k-level cluster consists of n1/m (k − 1)-level clusters,
k = 1 . . . m, 0-level clusters being nodes. The optimal clus-
tering is achieved when m ∼ log n. There are a few other
fairly strong assumptions about the properties of the required
partitioning. Neither an algorithm for its construction nor proof
of its existence are delivered, but if it does exist then the stretch
factor is shown to be

s = 1 +
1
d

m−1∑
k=1

[
1 − n

k
m − 1
n − 1

]
dk, (20)

where d is the network average distance and dk is the diameter
of a k-level cluster.

It is further assumed in [4] that both the network diameter
and average distance are power-law functions of the network
size. This is certainly not true for scale-free networks with
power-law node degree distributions. For recent results on
the average distance in such networks, see [29], [23]. In the
numerical evaluations in this appendix, we use the value of
d ∼ 3.6 observed in the Internet, [26].

As shown in [29], the diameter of networks with power-law
node degree distribution with exponent γ lying between 2 and
3 scales almost surely as Θ(log n). For the Internet, γ ∼ 2.1,
and since the Internet size n ∼ 1.5 × 104 is relatively large,
we may write the Internet diameter D as D ∼ c log n with
some multiplicative coefficient c. The observed value of D,
D ∼ 13 ([26]), defines c.

The size of a k-level cluster is obviously nk/m but nothing
rigorous can be said about its degree distribution since there is
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no procedure for its construction. Thus, it is natural to assume
that its degree distribution is also power-law with 2 < γ < 3,
which gives an estimate of the k-level cluster diameter as dk ∼
c log nk/m ∼ Dk/m. Substituting this in (20) and performing
summation gives

s ∼ 1 +
D

2d

[
m

n

n − 1
− n(n

2
m − 1)

(n − 1)(n
1
m − 1)2

+
2
m

n
1
m

(n
1
m − 1)2

]
.

(21)

Using the numerical values for n, d, D, and optimal m = 10,
we can see that the KK stretch factor on the Internet inter-
domain topology is

s ∼ 15. (22)

Note that a 15-times path length increase in the Internet
would lead to AS path lengths of ∼ 55 and IP hop path lengths
of ∼ 150.

The stretch factor is a nearly linear function of the number
of hierarchical levels m, which follows directly from equa-
tion (21) since it can be rewritten for large n as

s ∼ 1 +
D

2d
(m − 1). (23)

Using D ∼ log n, d ∼ log log n ([29]), and optimal
m ∼ log n, we obtain the following estimate of the stretch
factor as a function of the network size:

s ∼ log2 n

log log n
. (24)
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