The Shape and Size of Threats: Defining a
Networked System’s Attack Surface

Eric Osterweil
eosterweil @verisign.com

Abstract—As more complex security services have been
added to today’s Internet, it becomes increasingly difficult
to quantify their vulnerability to compromise. The concept
of ““attack surface” has emerged in recent years as a mea-
sure of such vulnerabilities, however systematically quan-
tifying the attack surfaces of networked systems remains
an open challenge. In this work we propose a methodology
to both quantify the attack surface and visually represent
semantically different components (or resources) of such
systems by identifying their dependencies. To illustrate the
efficacy of our methodology, we examine two real Internet
standards (the X.509 CA verification system and DANE)
as case studies. We believe this work represents a first
step towards systemically modeling dependencies of (and
interdependencies between) networked systems, and shows
the usability benefits from leveraging existing services.

I. INTRODUCTION

As we enhance our online services with increasing
numbers of features, we tend to increase the interdepen-
dency among individual components. In the case of cryp-
tographic protections, even just adding cryptographic key
management can make systems far more complex than
they were before. Moreover, failure modes often result
in non-intuitive user interactions (such as pop-up boxes
in web browsers when HTTPS encounters errors). By
trying to ease the user’s life, protocols like HTTPS have
inadvertently enabled certain types of attacks that the
user cannot even detect (let alone remediate) [24]. We
believe that streamlining the cryptographic protections
by utilizing existing services can make them more avail-
able by end users, operationally usable by administrators,
as well as less vulnerable to some forms of compromise.

One aspect of assessing the usability of a security
system involves analyzing both the vulnerabilities that
it protects against, and the vulnerabilities it has itself.
In order to fully understand the vulnerability of the
networked systems we depend on, it is important to
understand the vulnerabilities of those systems on which
they depend. However, it is generally held that even just
knowing all possible attacks that can be launched against
a given system is difficult, if possible (as evidenced by
cybercrime trends [4]). Moreover, as network perime-
ters and silos continue to be eroded through mobile
devices, laptops that move between networks, systems

/978-1-4799-6204-4/14$31.00 (©2014 IEEE

Danny McPherson
dmcpherson @verisign.com

Lixia Zhang
lixia@cs.ucla.edu

and resources that are deemed “protected” can become
vulnerabilities as they become exposed to new threats.

A concept dubbed “attack surface” has emerged in
recent years to describe the potential vulnerability that
may be exposed by a system through the sum of its
nested dependencies on other subsystems [22], [11],
[10]. This term is generally used to mean the set of
resources that a system relies upon which could feasibly
be used to launch an attack against it. Thus, systems
with larger attack surfaces are judged as potentially
more vulnerable. Yet, the heterogeneity of networked
systems, their complex dependencies, and the dynamism
of their interactions have made it difficult to quantify or
to illustrate the attack surface methodically.

In this work, we present four contributions: i) we
believe we are the first to offer a quantitative definition
of attack surface for networked systems, ii) we use
this definition to codify a repeatable methodology, iii)
we present a visualization technique (called Functional
Process Digraphs and resource graphs) to make analysis
more intuitive, and iv) we show that leveraging existing
services can avoid introducing new attack surface while
maintaining usability.

Our definition of “attack surface” refers to the spe-
cific set of resources that a networked system N uses,
such that if any of them were to act incorrectly (by
being compromised, subverted, replaced, etc.), N would
not be able to discern a problem and could therefore
malfunction. We define attack surface by modeling N’s
control flow and analyze the way N gets used. That is,
if a component of N queries for an answer, but that
answer (such as a DNS Resource Record, RR) cannot be
verified, then that server (or possibly an element along
a network path) can undetectably lie. Alternately, if an
answer can be verified by a cryptographic signature that
is verifiable by an X.509 certificate (for example), then
if that certificate’s private key were to be subverted, any
false attestations it made would not be detectable by the
networked system’s protocol. This replaces the RR and
makes the certificate key-pair part of the attack surface.

To illustrate the efficacy of our approach, we quan-
tified the attack surface of popular deployments of
HTTPS, which uses the Transport Layer Security
(TLS) [8]. We measured and compared the attack sur-

faces exposed by operational websites under two pos-
sible standards-based solutions employed by TLS: the
X.509 Certification Authority (CA) verification proce-
dure used by the “Web PKI” model [2], and the DNS-
based Authentication of Named Entities (DANE) [1]
protocol for TLSA [9]. Our results show that one of the
fundamental protocol semantics of DNSSEC (its use of
object-level security) can quantifiably reduce the attack
surface of systems by up to two orders of magnitude,
and that using DANE can reduce the attack surface
of systems by leveraging existing DNS service. Our
methodology also exposes a fundamental orthogonality
between attack surface and availability, which we discuss
further in Section VI.

II. COMPARING CA AND DANE VERIFICATION

CA Verification: The goal of the CA verification
system [7] is twofold: it verifies the authenticity of the
binding between a certificate and a domain name, and it
allows the CA organization to vouch for the “trustwor-
thiness” of the entity that is managing the domain name
in question (and by extension, the certificate). That is,
when a Relying Party (RP, an entity that is trying to
validate the authenticity of a remote service), such as a
web browser, wants to make a secure HTTPS connection
to a website, it wants to be sure it has received the
right certificate, and (in some cases) that the certificate
holder (the domain name authority) is “trustworthy.” This
simple operation implies that RP software must be able
to verify certificates from the multitudes of websites it
may visit, without knowing them ahead of time.

Today’s RP software uses a set of trusted root certifi-
cates that are issued by Certification Authorities (CAs).
RP software vendors determine which CA organizations
they trust, and pre-install certificates from these CAs in
their software. Typically, whenever this set needs to be
refreshed or changed, the vendor updates the list out of
band via code updates. When an RP receives a certificate,
it checks to see if that certificate has a chain of signatures
that leads to a trusted CA. Then it performs various
sanity checks on the certificate (specified in [7]: has it
expired, is it formatted properly, etc.), it must also see if
the certificate itself has been revoked. Each certificates
can include URL pointers to where its revocation status
can be checked. When certificate owners want to revoke
their certificates, they instruct the issuing CA to put them
in Certificate Revocation Lists (CRLs), or advertise them
on Online Certificate Status Protocol (OCSP) servers,
and RP software has to check them over the network.

The CA verification model involves numerous sys-
temic dependencies on other systems: i) a recursive
set of DNS lookups to find a webserver’s IP(s), ii) a
webserver connection to get a certificate, iii) consultation
of/verification with root CA list that is maintained out

of band, iv) external check to see if certificates have
been revoked, and then v) the TLS session generates
session keys and begins communication. This model is
vulnerable to an attack dubbed “attack on one, defeats
all” [17], in which any CA can issue a certificate for any
domain name; asserting validity without authorization.

As a result, suppose a website www is serving a
certificate C4 from CA A. If an adversary has com-
promised a different CA C'omp, and uses it to issue a
forged certificate Ccom,p that purports to belong to www,
then the RPs have no way to programmatically detect or
determine that Ccomp is not an authorized certificate
for www. This attack was used when DigiNotar was
compromised and issued Ccomyp certs for Google [24];
several other instances of this attack are well known
too [5], [13], [24], [16]. These sorts of problems have
led to alternative verification methods.

DANE’s TLSA: The IETF has standardized a new ap-
proach, called the DNS-based Authentication of Named
Entities (DANE) [1], as an alternative to the CA model.
At its core, DANE is an architectural suite for publishing
the cryptographic keys in DNS for various protocols
and is composed of a growing set of standards. Its
development is driven by two simple observations: i) any
transaction that uses a DNS domain name (as opposed
to a hard coded IP address) begins with a DNS look up
(often for an IP address), and ii) DNS transactions can
be authenticated by DNSSEC, which is now operational
and has a growing deployment [20] and set of tools [12].

In this work, we focus on the use of DANE to
distribute TLS certificates (TLSA) [9] to TLS clients.
DANE’s TLSA allows domain owners to control and
manage their own verification, thus removing the sys-
temic dependencies needed by the CA verification
model. DANE’s efficient design also lets DNS admin-
istrators manage the life cycle and operations of their
own keys, and makes authorization more transparent by
signaling explicit domain-to-certificate bindings to RPs.

The TLSA standard uses a naming syntax to encode
which port and protocol an X.509 certificate is autho-
rized for into the DNS name. Figure 1 shows how
DANE’s TLSA RR is used. In the remainder of this
paper, we focus our analysis on TLSA records whose
Usage is DANE EE certificates.

Previously, RPs had no way to determine if a certifi-
cate they encounter is authentic, or merely certified by
a compromised CA [24]. DANE eliminates this vulnera-
bility by a technique called stapling that explicitly maps
a domain name to a certificate (or a Trust Anchor). RPs
can then verify what certificate they should see when
they contact a corresponding web server, and DNSSEC
RRsets include the necessary cryptographic signatures
to allow RPs to verify the authenticity of the stapling.
Also, the complicated systemic dependencies needed for

Matching I

K ’ ‘ Certificate
2 Type

Dlmge Selector

AW
Web F’K\I/
(PKIX) - or =

Certificate
Association

TH= e TTSA RR

Fig. 1: Certificate Usage specifies how the RR authorizes a specific
CA’s certificate: 0 - it must be present in the PKIX chain (“stapling”),
or 1 - it must be an End Entity (EE) certificate which must pass full
PKIX validation, or 2 - it must be a trust anchor (TA), or 3 - it must
only be an EE certificate (which need not be verified in any other
way than DANE). The Selector field specifies what portion of the
certificate is used to match against the TLSA RR (currently, either the
full certificate, or just the DER encoded SubjectPublicKeyInfo). The
Matching field indicates whether the full certificate is present in the
Certificate Association Data field, or the kind of a fingerprint hash.

Fingerprint

revocation are obviated by DANE’s design. In DANE,
deauthorization of a certificate is implicitly handled by
simply removing the TLSA record from a zone. After
that, the certificate will only be authorized for as long
as it exists in DNS caches.

Consider the following illustrative example, when an
RP wants to connect to www.example.com, it queries for
both the IP address records for that domain name, and
the TLSA record type at _443._tcp.www.example.com
(and uses DNSSEC to verify all returned values). If it
gets back a TLSA record for that name, it knows that
there is an HTTPS server running there (so attacks like
sslstrip will not work), and exactly what certificate to
expect from that webserver (the web server’s certificate
must match that TLSA); if that certificate comes from a
CA, only that CA can attest to the certificate (stapling).
After that, no other verification or revocation needs to
be done, and the RP can query the specified web server.

III. AN ATTACK SURFACE METHODOLOGY

We define attack surface as a measurable set of
active elements that might be used in some way by
potential attack vectors and adversaries, if they were
to act incorrectly. This allows us to concisely quantify
the attack surface of CA verification and DANE. While
our methodology is unambiguous about which elements
contribute to the attack surface, we submit this as just
one candidate way to systematically define the attack
surface for these specific systems, others may define
attack surfaces differently.

We quantify attack surface by modeling the way a
networked system operates, by tracing its control flow,
and enumerating the resources it uses to verify the
correctness of its transactions. We begin by modeling
a networked system as a set of protocols, systems,
procedures, etc. We collectively call these a logical set
of processes P. Each process p; € P is composed of
both a set of functional logic (the things it does, the

decisions of which data it uses and trusts, etc.), and the
set of resource elements that it uses (the data it uses, the
network elements it needs to contact, etc.). Each process
becomes a two-tuple: p; = {W;, R;}, where we define
W; as a workflow graph that describes how a process
acquires and determines the trustworthiness of data (or
network resources, etc.), and where we define R; as a
resource graph of the elements W;.

Our goal is to use the set of all R; graphs by all
processes in P as our attack surface. To this end,
we break our methodology down into three general
phases. We first identify the processes involved in P,
by creating a Functional Processes Digraph (FPD), and
denote it Gppp = (P,E). This FPD identifies the
set and functional interactions (adjacencies) between all
the processes involved. Next, we determine the internal
workflow W, for each p; € P. Then, in the final
phase, these graphs identify the resource elements in
each process’ R; graph.

Processes in the FPD: In the process digraph
Grpp = (P, E), we represent each separate protocol
and system as a separate process p; € P, and for each
process p; that leads to an invocation of process p;
(where {p;,p;} € P), we add a directed edge e; ;) € E.
So, for example, if a set of DNS queries prompts a web
browser to create a TCP connection to a webserver, then
an edge will connect the DNS process with the webserver
TCP process in the FPD.

We focus our attack surface analysis on those pro-
cesses that are visible to, directly involved in, invoked by,
and involved in protocol actions and directly specified
at the same logical layer(s) of those actions. Rather
than recursing to resource elements all the way down
to the physical layer, we represent just a single level of
abstraction (i.e. a network path instead of elements at
all layers 1-4). We make a simplifying assumption that
components that are out of the view of our verification
process (while clearly candidate attack elements that
could influence our attack surface) are better described
in another system’s view of its attack surface.

CA Functional Process Digraph: Since the CA verifi-
cation model for TLS is different than the DANE model,
we create separate process graphs for each of them.
GC A
DNS — Web connection — web cert — CA list — Check

revocation — TLS
First, web clients go to DNS to look for a domain name-
to-IP mapping for a web site. If DNSSEC is properly
deployed, DNS data can be verified. Then they initiate
a TCP connection to the returned web server, which
returns an X.509 certificate. The client then validates
the certificate by checking that the certificate’s reported
CA is in the client’s internal list of trusted CAs, and
that each link in the cryptographic chain from that CA is

verifiable. Then, the client examines the certificate to see
if it specifies any CRLs or OCSP servers. If these exist,
it queries DNS, then it queries the revocation site(s).
Though, recent work suggests these mechanisms can be
unreliable [3]. Finally, if the above is successful, the
client creates a TLS session.

DANE Function Process Digraph: (GpanE):
DNSSEC — Web connection — web cert — TLS
This verification FPD is a logical subset of the CA
verification FPD G4, except in Gpanyg DNSSEC is
mandatory. That the simple addition of DANE’s TLSA
record overloads the DNS dependency, and removes an
RP’s need for all of the related processes, so we can say

that Gpane C Goa. !

Creating Resource Element Graphs: The verifica-
tion workflows defined in our FPDs provide the di-
rection needed to identify the resource element graphs
(R) which collectively define our actual attack surface.
For example, we can see that the DNS and a web
server’s X.509 certificate are needed by both CA and
DANE verification. However (as we noted earlier), these
systems and protocols are not all specified in the same
logical way. DNS is concerned with name resolutions,
DNS server IP addresses, communication with name
servers, and more. By contrast, X.509 is a cryptographic
certificate suite, and even the semantics of its protections
are described in a fundamentally different way than
a network protocol like DNS; it specifies a notion of
object-level security that is session agnostic.

In order to quantify the attack surface that spans these
conceptually different resource types, we represent the
set of R; graphs in a way that focuses on the type
and number of security elements each process uses.
We do this by creating a model where different types
of resources exist as elements in different tiers of our
resource graph. In other words, we create a set of tiers
in our graph where each tier models a separate (but
somewhat general) type of element in the spectrum of
security. We seed our model with three general tiers: 1)
object-level security, ii) session-level security, and iii)
Network-Delivery Assurances.’

The CA Resource Tiers: Here we project the process
from Gga into Figure 2 and then discuss why the
placement of each process is in a specific tier.

Modeling DNS: In order to quantify the elements
involved in the DNS process ppnyg, we leverage the
prior work [19], [21]. These works describe the notion
of Transitive Trust in the DNS, and illustrate that sim-
ple DNS lookups often involve recursive (not strictly
hierarchical) dependencies, and (without DNSSEC) any

IProcess workflow details are omitted, due to space restrictions.

2While this may not be an optimal or complete set of the tiers that
others may use, we use these as general examples of types of security
in which many different protocols and systems can be aggregated.

Object-Level Security
web I W CA (A, A
ijl Q—_%I-DCAs

Session-Level Security

(

DNS WWW/
Resolution TCP

DNS Footprint

Fig. 2: This Figure depicts our proposed three tiers of network resource
graphs for the CA verification’s attack surface.

C\ S Object-Level Security
L -~ Web
Dg’:?f > Cert
Restlution QPSL Cy)\

/Session-Level Secum
\ LS
ﬂ / /,>

\ r Network-Delivery Assurances
WwWw/
TCP

Fig. 3: The attack surface of DANE’s resource graphs.

element or network path can undetectably lie.

Modeling the Web Server: Quantifying the web server
process (pweb) 1S comparatively easy to the DNS, be-
cause we do not recurse below the specified protocol
level. We simply model a separate element in R, for
every IPv4 and IPv6 server that the site’s zone specifies,
in the Network-Delivery Assurances tier for the same
reason as Rpng.

Modeling the Web Server’s Certificate: The web
server’s certificate represents a single element in the
Object-Level Assurances tier of R c;.

Modeling the CA List: While the CAs are each just
X.509 certificates whose assurances exist in the Object-
Level Security tier, the number of resource elements (i.e.
the driving portion of the attack surface size) actually
also depends on the specific software platform that the
Relying Party (RP) uses. This is because the list of CAs
that each software vendor bundles is independent (often
it is roughly 160 elements). In addition, many CAs dele-
gate signing authority to other subordinate CAs (for load
balancing, scalability, operational ease, etc.). As a result,
the CA model includes multiple levels of CA signers,
each of which increases the attack surface. Therefore,
the CA process’ resource element graph Rc 4 is a set
of trees, the set of whose root certificates C..,o15 Vary
depending on client software (but are knowable, a priori),
and the set of whose subordinate/delegated certificates
Cdeleg is learned dynamically during verification. Be-
cause of this, we define Roa = {Chroots; Cdeleg }-

Modeling Certificate Revocation: The revocation sys-

tem for X.509 certificates is designed to let RPs deter-
mine if a certificate that is about to be used has been
revoked (and therefore should not be used). Certificate
revocation is specified as CRL URI(s), OCSP URI(s), or
sets of both. Regardless, the RP must first use DNS to
locate the server(s) responsible for serving the revocation
info, and then contact those servers. Thus, for pje.,
the resource element graph (R,.,) is computed as we
previously did for the initial DNS lookup and for the
web server: the Transitive Trust graph and the server IP
addresses in the Network-Delivery Assurances tier.

Modeling the TLS Session: Finally, the TLS process
prrs will set up a session key, and that key is in the
Session-Level Security tier of Rrps.

The DANE Resource Tiers: Because Gpang C
Gca, the tiered attack surface representation is also a
logical subset. Figure 3 shows that DANE cuts out the
CA verification hierarchy and the certificate revocation
surface. However, the Figure also illustrates the effect
due to DANE’s requirement to use DNSSEC: Rpng is
in the Object-Level Security tier.

Measuring and Comparing the Attack Surface
Areas: In our model, we consider the attack surface S
to be defined as the union of resource element graphs
in our Gppp: S = Uﬁg’” Dl R; Each element in each
tier of our resource graphs can have different importance
in the role of compromising the overall system (some
things are more useful in some attacks than others).
For example, is compromising a DNS secondary server
as easy or useful as compromising a CA’s certificate?
This would likely depend on the adversary’s attack,
motivation, goals, etc. and a weighting could be different
in different circumstances. One of the benefits of the
attack surface model is that these orthogonal importances
are independently assignable. Our evaluation models
each element as having the same weight in the overall
A= 55 m

IV. EVALUATION

To calculate A, we used the most popular 1,000
websites described by Alexa [23] to find examples of
popular TLS deployments. To examine the transitive
trust footprints we implemented the technique described
in [19], and ran it on each zone in our site list. Next,
we considered the surface area of the web servers for
each site. However, queries for address records can
sometimes return different answers to different clients
(e.g. CDNs). As such, we assign each site’s web server
as having area = 1, as a lower bound that, if anything,
underestimates the attack surface area. Next we calculate
Reeri for our web sites. Interestingly, 18.03% of the
sites that offered HTTPS at both domain names (e.g.,
example.comand www . example.com) used unique
certificates for each. Each of these certificates expose

Attack Surface Areas
10000

Surface Area mm—
Area with DNSSEC
Area with DANE

1000

100

Surface Area

10

1

Sites

Fig. 4: This Figure shows the observed attack surface A for the
certificates seen for the Alexa top 1,000 (the top curve), if they were to
deploy DNSSEC (middle curve), and if DANE were deployed (lower
curve), note the log scale.

a different attack surface. Of the 616 sites that ran
HTTPS, we found 702 different certificates. However,
recall the Rc4 portion of the overall attack surface
includes the key pairs (represented by certificates) that
root CAs delegate to (Cgereq), Which are also used to sign
certificates. From the data in some existing measurement,
we calculated the average number of delegated signing
certificates from each root to be 1.79. In the case of
CA verification, the client’s RP software dictates the
list of CAs that are used in verification. At the time
of this writing, the size of CA lists in some popular
RP software varied between 167 and 169 CAs [6], [14],
[15]. Across the certificates seen, 24.9% used only CRL-
based revocation, 3.3% used only OCSP, and 40.7% used
both. The remainder used neither of these revocation
systems. Only 4.6% of the measured sites had DNSSEC
deployed. While this is a small fraction, it is larger than
earlier reports of DNSSEC’s penetration [18]. However,
none of these sites had deployed DANE. Using Mozilla’s
CA list to represent RPs, Figure 4 illustrates the attack
surfaces (Aca and Apang) for each site we measured
(note the logscale y-axis). This Figure illustrates that the
attack surface areas for our measured sites are at least
two orders of magnitude larger than what they would
be with DNSSEC, and the DNSSEC surface area is one
order of magnitude larger than it would be with DANE.

V. RELATED WORK

Attack surfaces have long been discussed by a vari-
ety of communities. For example, the authors of No-
Hype [22] use the concept of attack surface, but elided
a formal definition by broadly classifying the logical
boundary between guest operating systems and their
hypervisors as an attack surface. Then, by eliminating
the entire attack space between these two components,
their attack surface went from loosely specified to none.

In contrast, in [11], [10], the authors define ways
in which to analyze single-instance software systems
and detect how much programmatic attack surface they
expose by examining and quantifying them through state

machines and I/O automata. The focus on vulnerabilities
conflates the notion of an attack surface with the likeli-
hood of being successfully subverted (i.e. attack surface
+ how an attack will be actually be realized). We feel
that these are both important to model, but also that
an attack surface definition is maximally useful when
it accounts for resource elements that could feasibly
be used in an attack even before the attack is known
(i.e. those that can undetectable lie). Also, these works
focus only quantifying only a relative notion of attack
surface between successive versions of the same system
(as opposed to comparing the general surface between
different designs). However, this work’s I/O automata
seem to be quite complimentary with our methodology.

VI. DISCUSSION AND SUMMARY

DNSSEC Collapses Attack Surface: Section III
shows that the plain old DNS (poDNS) has transi-
tive trust relationships that result in each name server
becoming a resource in the attack surface. However,
our methodology uncovers that because DNSSEC (in
general) offers Object-Level Security that is based solely
on the DNS hierarchy, it effectively removes the ability
of name servers to lie. This allows DNS secondary
servers to run as untrusted systems and only authorities
for a zone can issue verifiable data. Section IV shows
reduction of attack surfaces by two orders of magnitude.
DNS’ security model changes from Network-Delivery
Assurances into Object-Level Security (DNS RRset be-
come signed and self-verifying).

The Difference Between Attack Surface and Avail-
ability: Designers, operators, and other engineers of-
ten try to bolster the availability of their systems by
augmenting them with multiple redundant resources
(such as by increasing the number of secondary DNS
servers, etc). Our analysis illustrates that vulnerability
and availability are not necessarily competing notions,
and can be made independent of each other. One could
design a system in which increased availability resulted
in additional attack surface, but this is not necessarily the
case. Our definition of attack surface is only composed
of resources that can lie, and thereby successfully subvert
a system’s correct operation. Availability can be thought
of as a measure of the probability that one gets data in
the presence of unexpected failures. Higher redundancy
can result in higher availability. It is true that higher
redundancy can result in larger attack surface, if the
correctness of the system depends on the correctness of
the individual components. However, bolstering a sys-
tem’s availability with resources that cannot lie does not
increase attack surface with availability. For illustration
we compare the attack surface of poDNS’ transitive trust
with DNSSEC’s key hierarchy.

Summary: This work represents a first step towards

the quantitative measurement of systems’ attack surfaces.
Our methodology offers an intuitive way to visualize
why the attack surface of DANE precludes the possi-
bility of certain types of attacks, like those exposed
by DigiNotar [24]. We also hope this paper will serve
as an invitation to the community both to help further
improve our methodology, and to develop quantifiable
measurements for other networked security systems.

REFERENCES

[1] DNS-based Authentication of Named Entities (DANE). https:
//datatracker.ietf.org/wg/dane/charter/.
[2] Web PKI Ops (WPKOPS). https://datatracker.ietf.org/wg/

wpkops/charter/.
[3] How certificate revocation (doesn’t) work in
practice. Blog post, Netcraft, May 2013.

http://news.netcraft.com/archives/2013/05/13/how-certificate-
revocation-doesnt-work-in-practice.html.

[4] the current state of cybercrime 2013, 2013. http://www.emc.com/
collateral/fraud-report/current-state-cybercrime-2013.pdf.

[51 M. S. A. (2718704). Unauthorized digital certificates could allow
spoofing, 2012.

[6] Apple. iOS 5: List of available trusted root certificates. http:
//support.apple.com/kb/HT5012.

[71 D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and
W. Polk. Internet x.509 public key infrastructure certificate and
certificate revocation list (crl) profile. RFC 5280, May 2008.

[8] T. Dierks and E. Rescorla. The transport layer security (tls)
protocol version 1.2. RFC 5246, 2008.

[9] P. Hoffman and J. Schlyter. The DNS-Based Authentication

of Named Entities (DANE) Transport Layer Security (TLS)

Protocol: TLSA. RFC 6698 (Proposed Standard), 2012.

M. Howard, J. Pincus, and J. M. Wing. Measuring relative attack

surfaces. In Computer Security in the 21st Century, pages 109—

137. 2005.

P. Manadhata and J. Wing. An attack surface metric. Software

Engineering, IEEE Transactions on, 37(3), may-june 2011.

A. Mankin, W. Toorop, N. Goyal, and G. Wiley. Dnssec via a

new stub resolver. In OSCON, 2014.

M. Marlinspike. Breaking SSL with null characters. Black Hat,

2009.

Microsoft. Windows Root Certificate Program - Members List

(All CAs), October 2011. http://social.technet.microsoft.com/

wiki/contents/articles/2592.aspx.

Mozilla. Mozilla Root Certificate List. http://mxr.mozilla.org/

firefox2/source/security/nss/lib/ckfw/builtins/certdata.txt.

E. Nigg. Untrusted Certificates, 2008. https://blog.startcom.org/

p=145.

E. Osterweil, B. Kaliski, M. Larson, and D. McPherson. Re-

ducing the X.509 Attack Surface with DNSSEC’s DANE. In

Securing and Trusting Internet Names, SATIN ’12, 2012.

E. Osterweil, D. Massey, and L. Zhang. Observations from the

DNSSEC Deployment. In NPSec '07, 2007.

E. Osterweil, D. McPherson, and L. Zhang. Operational im-

plications of the dns control plane. IEEE Reliability Society

Newsletter, May 2011.

E. Osterweil, M. Ryan, D. Massey, and L. Zhang. Quantifying

the operational status of the dnssec deployment. In IMC 08,

2008.

V. Ramasubramanian and E. G. Sirer. Perils of transitive trust in

the domain name system. IMC °05, 2005.

J. Szefer, E. Keller, R. B. Lee, and J. Rexford. Eliminating the

hypervisor attack surface for a more secure cloud. In CCS, 2011.

the Web Information Company. Alexa. http://www.alexa.com.

W. A. C. Weekly. DigiNotar SSL certificate

compromise widens to include security agencies, 2011.

http://www.computerweekly.com/Articles/2011/09/05/247792/

DigiNotar-SSL-certificate-compromise-widens-to-include-

security.htm.

[10]

(1]
[12]
[13]

[14]

[15]
[16]

(17]

(18]

[19]

[20]

[21]
[22]

[23]
[24]

